Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081769240> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3081769240 endingPage "180" @default.
- W3081769240 startingPage "176" @default.
- W3081769240 abstract "The design of a riser is very time consuming, since a large number of parameters (e.g.: thickness, top angle, and material properties) are involved and tight safety requirements must be met. This leads to the study of tools, such as optimization algorithms, that can speed up the process of elaborating a feasible riser project for certain conditions. Considering that some of the parameters in the design of a riser can assume a discrete set of values, the utilization of mathematical programming algorithms becomes unfeasible. It is then necessary to use metaheuristic algorithms, such as Genetic Algorithm and Particle Swarm Optimization.In this context, this paper presents a study on the application of bio-inspired algorithms,including GA and PSO, to the design optimization of steel catenary risers. The problem consists of finding the riser material and wall thickness that minimize the cost to fabricate a viable riser, in conformance with the requirements of technical standards. The main hypotheses that were adopted are presented, along with the description of the methodology employed. The results show that a significant reduction in riser cost is achieved when the riser is divided in multiple segments with different thickness and material. The efficiency of the utilized algorithms in finding an optimum riser design for the specified conditions is onfirmed by the obtained numerical results." @default.
- W3081769240 created "2020-09-08" @default.
- W3081769240 creator A5042814082 @default.
- W3081769240 creator A5057399407 @default.
- W3081769240 date "2016-01-01" @default.
- W3081769240 modified "2023-09-27" @default.
- W3081769240 title "OPTIMIZATION OF STEEL CATENARY RISERS USING BIOINSPIRED ALGORITHMS" @default.
- W3081769240 cites W1487678510 @default.
- W3081769240 cites W1991080626 @default.
- W3081769240 cites W1998807083 @default.
- W3081769240 cites W2044625449 @default.
- W3081769240 cites W2139386984 @default.
- W3081769240 cites W2155950108 @default.
- W3081769240 doi "https://doi.org/10.26512/ripe.v2i25.20859" @default.
- W3081769240 hasPublicationYear "2016" @default.
- W3081769240 type Work @default.
- W3081769240 sameAs 3081769240 @default.
- W3081769240 citedByCount "0" @default.
- W3081769240 crossrefType "journal-article" @default.
- W3081769240 hasAuthorship W3081769240A5042814082 @default.
- W3081769240 hasAuthorship W3081769240A5057399407 @default.
- W3081769240 hasConcept C111335779 @default.
- W3081769240 hasConcept C111919701 @default.
- W3081769240 hasConcept C11413529 @default.
- W3081769240 hasConcept C126255220 @default.
- W3081769240 hasConcept C127413603 @default.
- W3081769240 hasConcept C151730666 @default.
- W3081769240 hasConcept C177264268 @default.
- W3081769240 hasConcept C199360897 @default.
- W3081769240 hasConcept C2524010 @default.
- W3081769240 hasConcept C2779343474 @default.
- W3081769240 hasConcept C29279314 @default.
- W3081769240 hasConcept C33923547 @default.
- W3081769240 hasConcept C41008148 @default.
- W3081769240 hasConcept C66938386 @default.
- W3081769240 hasConcept C85617194 @default.
- W3081769240 hasConcept C86803240 @default.
- W3081769240 hasConcept C8880873 @default.
- W3081769240 hasConcept C98045186 @default.
- W3081769240 hasConceptScore W3081769240C111335779 @default.
- W3081769240 hasConceptScore W3081769240C111919701 @default.
- W3081769240 hasConceptScore W3081769240C11413529 @default.
- W3081769240 hasConceptScore W3081769240C126255220 @default.
- W3081769240 hasConceptScore W3081769240C127413603 @default.
- W3081769240 hasConceptScore W3081769240C151730666 @default.
- W3081769240 hasConceptScore W3081769240C177264268 @default.
- W3081769240 hasConceptScore W3081769240C199360897 @default.
- W3081769240 hasConceptScore W3081769240C2524010 @default.
- W3081769240 hasConceptScore W3081769240C2779343474 @default.
- W3081769240 hasConceptScore W3081769240C29279314 @default.
- W3081769240 hasConceptScore W3081769240C33923547 @default.
- W3081769240 hasConceptScore W3081769240C41008148 @default.
- W3081769240 hasConceptScore W3081769240C66938386 @default.
- W3081769240 hasConceptScore W3081769240C85617194 @default.
- W3081769240 hasConceptScore W3081769240C86803240 @default.
- W3081769240 hasConceptScore W3081769240C8880873 @default.
- W3081769240 hasConceptScore W3081769240C98045186 @default.
- W3081769240 hasIssue "25" @default.
- W3081769240 hasLocation W30817692401 @default.
- W3081769240 hasOpenAccess W3081769240 @default.
- W3081769240 hasPrimaryLocation W30817692401 @default.
- W3081769240 hasRelatedWork W1969015918 @default.
- W3081769240 hasRelatedWork W1989134985 @default.
- W3081769240 hasRelatedWork W2019235376 @default.
- W3081769240 hasRelatedWork W2031981733 @default.
- W3081769240 hasRelatedWork W2035242646 @default.
- W3081769240 hasRelatedWork W2084821003 @default.
- W3081769240 hasRelatedWork W2091444874 @default.
- W3081769240 hasRelatedWork W2178183625 @default.
- W3081769240 hasRelatedWork W2782784939 @default.
- W3081769240 hasRelatedWork W283903154 @default.
- W3081769240 hasRelatedWork W2894098487 @default.
- W3081769240 hasRelatedWork W2911391849 @default.
- W3081769240 hasRelatedWork W2946147024 @default.
- W3081769240 hasRelatedWork W2999173461 @default.
- W3081769240 hasRelatedWork W3013675727 @default.
- W3081769240 hasRelatedWork W3031335141 @default.
- W3081769240 hasRelatedWork W307554648 @default.
- W3081769240 hasRelatedWork W3181115472 @default.
- W3081769240 hasRelatedWork W3205284877 @default.
- W3081769240 hasRelatedWork W2608230969 @default.
- W3081769240 hasVolume "2" @default.
- W3081769240 isParatext "false" @default.
- W3081769240 isRetracted "false" @default.
- W3081769240 magId "3081769240" @default.
- W3081769240 workType "article" @default.