Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081791105> ?p ?o ?g. }
- W3081791105 abstract "Abstract Backgrounds Knowledge discovery from breast cancer treatment records has promoted downstream clinical studies such as careflow mining and therapy analysis. However, the clinical treatment text from electronic health data might be recorded by different doctors under their hospital guidelines, making the final data rich in author- and domain-specific idiosyncrasies. Therefore, breast cancer treatment entity normalization becomes an essential task for the above downstream clinical studies. The latest studies have demonstrated the superiority of deep learning methods in named entity normalization tasks. Fundamentally, most existing approaches adopt pipeline implementations that treat it as an independent process after named entity recognition, which can propagate errors to later tasks. In addition, despite its importance in clinical and translational research, few studies directly deal with the normalization task in Chinese clinical text due to the complexity of composition forms. Methods To address these issues, we propose PASCAL, an end-to-end and accurate framework for breast cancer treatment entity normalization (TEN). PASCAL leverages a gated convolutional neural network to obtain a representation vector that can capture contextual features and long-term dependencies. Additionally, it treats treatment entity recognition (TER) as an auxiliary task that can provide meaningful information to the primary TEN task and as a particular regularization to further optimize the shared parameters. Finally, by concatenating the context-aware vector and probabilistic distribution vector from TEN, we utilize the conditional random field layer (CRF) to model the normalization sequence and predict the TEN sequential results. Results To evaluate the effectiveness of the proposed framework, we employ the three latest sequential models as baselines and build the model in single- and multitask on a real-world database. Experimental results show that our method achieves better accuracy and efficiency than state-of-the-art approaches. Conclusions The effectiveness and efficiency of the presented pseudo cascade learning framework were validated for breast cancer treatment normalization in clinical text. We believe the predominant performance lies in its ability to extract valuable information from unstructured text data, which will significantly contribute to downstream tasks, such as treatment recommendations, breast cancer staging and careflow mining." @default.
- W3081791105 created "2020-09-08" @default.
- W3081791105 creator A5003257736 @default.
- W3081791105 creator A5033169002 @default.
- W3081791105 creator A5038838057 @default.
- W3081791105 creator A5042218485 @default.
- W3081791105 creator A5043617922 @default.
- W3081791105 creator A5049936379 @default.
- W3081791105 creator A5051178997 @default.
- W3081791105 creator A5066599847 @default.
- W3081791105 creator A5067086355 @default.
- W3081791105 creator A5085974545 @default.
- W3081791105 creator A5089482025 @default.
- W3081791105 date "2020-08-28" @default.
- W3081791105 modified "2023-10-18" @default.
- W3081791105 title "PASCAL: a pseudo cascade learning framework for breast cancer treatment entity normalization in Chinese clinical text" @default.
- W3081791105 cites W2014409199 @default.
- W3081791105 cites W2101159734 @default.
- W3081791105 cites W2131774270 @default.
- W3081791105 cites W2137779110 @default.
- W3081791105 cites W2142016317 @default.
- W3081791105 cites W2194775991 @default.
- W3081791105 cites W2292220633 @default.
- W3081791105 cites W2414378847 @default.
- W3081791105 cites W2555950988 @default.
- W3081791105 cites W2571107035 @default.
- W3081791105 cites W2604019706 @default.
- W3081791105 cites W2784833642 @default.
- W3081791105 cites W2788215475 @default.
- W3081791105 cites W2889607075 @default.
- W3081791105 cites W2907935785 @default.
- W3081791105 cites W2912213068 @default.
- W3081791105 cites W2962839749 @default.
- W3081791105 cites W2963558486 @default.
- W3081791105 cites W2990074895 @default.
- W3081791105 cites W3105491236 @default.
- W3081791105 cites W4241563152 @default.
- W3081791105 doi "https://doi.org/10.1186/s12911-020-01216-9" @default.
- W3081791105 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7456389" @default.
- W3081791105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32859189" @default.
- W3081791105 hasPublicationYear "2020" @default.
- W3081791105 type Work @default.
- W3081791105 sameAs 3081791105 @default.
- W3081791105 citedByCount "1" @default.
- W3081791105 countsByYear W30817911052023 @default.
- W3081791105 crossrefType "journal-article" @default.
- W3081791105 hasAuthorship W3081791105A5003257736 @default.
- W3081791105 hasAuthorship W3081791105A5033169002 @default.
- W3081791105 hasAuthorship W3081791105A5038838057 @default.
- W3081791105 hasAuthorship W3081791105A5042218485 @default.
- W3081791105 hasAuthorship W3081791105A5043617922 @default.
- W3081791105 hasAuthorship W3081791105A5049936379 @default.
- W3081791105 hasAuthorship W3081791105A5051178997 @default.
- W3081791105 hasAuthorship W3081791105A5066599847 @default.
- W3081791105 hasAuthorship W3081791105A5067086355 @default.
- W3081791105 hasAuthorship W3081791105A5085974545 @default.
- W3081791105 hasAuthorship W3081791105A5089482025 @default.
- W3081791105 hasBestOaLocation W30817911051 @default.
- W3081791105 hasConcept C119857082 @default.
- W3081791105 hasConcept C136886441 @default.
- W3081791105 hasConcept C144024400 @default.
- W3081791105 hasConcept C152565575 @default.
- W3081791105 hasConcept C154945302 @default.
- W3081791105 hasConcept C162324750 @default.
- W3081791105 hasConcept C187736073 @default.
- W3081791105 hasConcept C19165224 @default.
- W3081791105 hasConcept C199360897 @default.
- W3081791105 hasConcept C204321447 @default.
- W3081791105 hasConcept C2779135771 @default.
- W3081791105 hasConcept C2780451532 @default.
- W3081791105 hasConcept C41008148 @default.
- W3081791105 hasConcept C49937458 @default.
- W3081791105 hasConcept C75608658 @default.
- W3081791105 hasConceptScore W3081791105C119857082 @default.
- W3081791105 hasConceptScore W3081791105C136886441 @default.
- W3081791105 hasConceptScore W3081791105C144024400 @default.
- W3081791105 hasConceptScore W3081791105C152565575 @default.
- W3081791105 hasConceptScore W3081791105C154945302 @default.
- W3081791105 hasConceptScore W3081791105C162324750 @default.
- W3081791105 hasConceptScore W3081791105C187736073 @default.
- W3081791105 hasConceptScore W3081791105C19165224 @default.
- W3081791105 hasConceptScore W3081791105C199360897 @default.
- W3081791105 hasConceptScore W3081791105C204321447 @default.
- W3081791105 hasConceptScore W3081791105C2779135771 @default.
- W3081791105 hasConceptScore W3081791105C2780451532 @default.
- W3081791105 hasConceptScore W3081791105C41008148 @default.
- W3081791105 hasConceptScore W3081791105C49937458 @default.
- W3081791105 hasConceptScore W3081791105C75608658 @default.
- W3081791105 hasIssue "1" @default.
- W3081791105 hasLocation W30817911051 @default.
- W3081791105 hasLocation W30817911052 @default.
- W3081791105 hasLocation W30817911053 @default.
- W3081791105 hasOpenAccess W3081791105 @default.
- W3081791105 hasPrimaryLocation W30817911051 @default.
- W3081791105 hasRelatedWork W2078793151 @default.
- W3081791105 hasRelatedWork W2411964588 @default.
- W3081791105 hasRelatedWork W2590599429 @default.
- W3081791105 hasRelatedWork W2751906762 @default.
- W3081791105 hasRelatedWork W2757163186 @default.
- W3081791105 hasRelatedWork W2886890203 @default.