Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081842178> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3081842178 abstract "Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by examination of the Electrocardiogram (ECG) by a cardiologist. This method of diagnosis is hampered by the lack of accessibility to expert cardiologists. For quite some time, signal processing methods had been used to automate arrhythmia diagnosis. However, these traditional methods require expert knowledge and are unable to model a wide range of arrhythmia. Recently, Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale. However, the black-box nature of these models prohibit clinical interpretation of cardiac arrhythmia. There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG. To this end, two methods are proposed to provide interpretability to the models. The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model. In the second approach, saliency is derived by learning the input deletion mask for the LSTM model. The visualizations are provided on a model whose competence is established by comparisons against baselines. The results of model saliency not only provide insight into the prediction capability of the model but also aligns with the medical literature for the classification of cardiac arrhythmia.Clinical relevance— Adapts interpretability modules for deep learning networks in ECG arrhythmia classfication, allowing for better clinical interpretation" @default.
- W3081842178 created "2020-09-08" @default.
- W3081842178 creator A5020295407 @default.
- W3081842178 creator A5054706248 @default.
- W3081842178 creator A5061705530 @default.
- W3081842178 creator A5082792887 @default.
- W3081842178 creator A5086909526 @default.
- W3081842178 creator A5089235251 @default.
- W3081842178 date "2020-07-01" @default.
- W3081842178 modified "2023-10-16" @default.
- W3081842178 title "Interpreting Deep Neural Networks for Single-Lead ECG Arrhythmia Classification" @default.
- W3081842178 cites W2119212517 @default.
- W3081842178 cites W2295107390 @default.
- W3081842178 cites W2885127939 @default.
- W3081842178 cites W2902644322 @default.
- W3081842178 cites W2962858109 @default.
- W3081842178 cites W2963478701 @default.
- W3081842178 doi "https://doi.org/10.1109/embc44109.2020.9176396" @default.
- W3081842178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33017988" @default.
- W3081842178 hasPublicationYear "2020" @default.
- W3081842178 type Work @default.
- W3081842178 sameAs 3081842178 @default.
- W3081842178 citedByCount "16" @default.
- W3081842178 countsByYear W30818421782020 @default.
- W3081842178 countsByYear W30818421782021 @default.
- W3081842178 countsByYear W30818421782022 @default.
- W3081842178 countsByYear W30818421782023 @default.
- W3081842178 crossrefType "proceedings-article" @default.
- W3081842178 hasAuthorship W3081842178A5020295407 @default.
- W3081842178 hasAuthorship W3081842178A5054706248 @default.
- W3081842178 hasAuthorship W3081842178A5061705530 @default.
- W3081842178 hasAuthorship W3081842178A5082792887 @default.
- W3081842178 hasAuthorship W3081842178A5086909526 @default.
- W3081842178 hasAuthorship W3081842178A5089235251 @default.
- W3081842178 hasBestOaLocation W30818421782 @default.
- W3081842178 hasConcept C108583219 @default.
- W3081842178 hasConcept C119857082 @default.
- W3081842178 hasConcept C154945302 @default.
- W3081842178 hasConcept C164705383 @default.
- W3081842178 hasConcept C2779161974 @default.
- W3081842178 hasConcept C2781067378 @default.
- W3081842178 hasConcept C2984842247 @default.
- W3081842178 hasConcept C2988455589 @default.
- W3081842178 hasConcept C41008148 @default.
- W3081842178 hasConcept C50644808 @default.
- W3081842178 hasConcept C71924100 @default.
- W3081842178 hasConceptScore W3081842178C108583219 @default.
- W3081842178 hasConceptScore W3081842178C119857082 @default.
- W3081842178 hasConceptScore W3081842178C154945302 @default.
- W3081842178 hasConceptScore W3081842178C164705383 @default.
- W3081842178 hasConceptScore W3081842178C2779161974 @default.
- W3081842178 hasConceptScore W3081842178C2781067378 @default.
- W3081842178 hasConceptScore W3081842178C2984842247 @default.
- W3081842178 hasConceptScore W3081842178C2988455589 @default.
- W3081842178 hasConceptScore W3081842178C41008148 @default.
- W3081842178 hasConceptScore W3081842178C50644808 @default.
- W3081842178 hasConceptScore W3081842178C71924100 @default.
- W3081842178 hasLocation W30818421781 @default.
- W3081842178 hasLocation W30818421782 @default.
- W3081842178 hasLocation W30818421783 @default.
- W3081842178 hasOpenAccess W3081842178 @default.
- W3081842178 hasPrimaryLocation W30818421781 @default.
- W3081842178 hasRelatedWork W2605281151 @default.
- W3081842178 hasRelatedWork W3006943036 @default.
- W3081842178 hasRelatedWork W3129898729 @default.
- W3081842178 hasRelatedWork W3191046242 @default.
- W3081842178 hasRelatedWork W3208423683 @default.
- W3081842178 hasRelatedWork W4206493799 @default.
- W3081842178 hasRelatedWork W4213225422 @default.
- W3081842178 hasRelatedWork W4213432687 @default.
- W3081842178 hasRelatedWork W4294031299 @default.
- W3081842178 hasRelatedWork W4299487748 @default.
- W3081842178 isParatext "false" @default.
- W3081842178 isRetracted "false" @default.
- W3081842178 magId "3081842178" @default.
- W3081842178 workType "article" @default.