Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081869089> ?p ?o ?g. }
- W3081869089 endingPage "161260" @default.
- W3081869089 startingPage "161245" @default.
- W3081869089 abstract "Sparse coding is a popular technique for achieving compact data representation and has been used in many applications. However, the instability issue often causes degeneration in practice and thus attracts a lot of studies. While the traditional graph sparse coding preserves the neighborhood structure of the data, this study integrates the low-rank representation(LRR) to fix the inconsistency of sparse coding by holding the subspace structures of the high-dimensional observations. The proposed method is dubbed low-rank graph regularized sparse coding (LogSC), which learns sparse codes and low-rank representations jointly rather than the traditional two-step approach. Since the two data representations share a dictionary matrix, the resulted sparse representation on this dictionary could be benefited from LRR. We solved the optimization problem of LogSC by using the linearized alternating direction method with adaptive penalty. Experimental results show the proposed method is discriminative in feature learning and robust to various noises. This work provides a one-step approach to integrating graph embedding in representation learning." @default.
- W3081869089 created "2020-09-08" @default.
- W3081869089 creator A5046337047 @default.
- W3081869089 creator A5052639870 @default.
- W3081869089 date "2020-01-01" @default.
- W3081869089 modified "2023-10-13" @default.
- W3081869089 title "Integrated Sparse Coding With Graph Learning for Robust Data Representation" @default.
- W3081869089 cites W1201875361 @default.
- W3081869089 cites W1706897027 @default.
- W3081869089 cites W1966443746 @default.
- W3081869089 cites W1987185906 @default.
- W3081869089 cites W1993962865 @default.
- W3081869089 cites W1997201895 @default.
- W3081869089 cites W1998367754 @default.
- W3081869089 cites W2000769684 @default.
- W3081869089 cites W2007588387 @default.
- W3081869089 cites W2009226074 @default.
- W3081869089 cites W2035128422 @default.
- W3081869089 cites W2052575990 @default.
- W3081869089 cites W2097703723 @default.
- W3081869089 cites W2100556411 @default.
- W3081869089 cites W2103972604 @default.
- W3081869089 cites W2111557737 @default.
- W3081869089 cites W2125874614 @default.
- W3081869089 cites W2129812935 @default.
- W3081869089 cites W2130187411 @default.
- W3081869089 cites W2134262590 @default.
- W3081869089 cites W2134789674 @default.
- W3081869089 cites W2140245639 @default.
- W3081869089 cites W2145889472 @default.
- W3081869089 cites W2153635508 @default.
- W3081869089 cites W2163922914 @default.
- W3081869089 cites W2164452299 @default.
- W3081869089 cites W2240559667 @default.
- W3081869089 cites W2262946425 @default.
- W3081869089 cites W2264763800 @default.
- W3081869089 cites W2415184100 @default.
- W3081869089 cites W2415447328 @default.
- W3081869089 cites W2507998592 @default.
- W3081869089 cites W2576167394 @default.
- W3081869089 cites W2592859786 @default.
- W3081869089 cites W2610492717 @default.
- W3081869089 cites W2610617435 @default.
- W3081869089 cites W2614850865 @default.
- W3081869089 cites W2791052411 @default.
- W3081869089 cites W2884728377 @default.
- W3081869089 cites W2886265585 @default.
- W3081869089 cites W2915028496 @default.
- W3081869089 cites W2919115771 @default.
- W3081869089 cites W2962904605 @default.
- W3081869089 cites W2963630677 @default.
- W3081869089 cites W2972505576 @default.
- W3081869089 cites W3001656829 @default.
- W3081869089 cites W3003326148 @default.
- W3081869089 cites W3010492793 @default.
- W3081869089 cites W4205213118 @default.
- W3081869089 cites W4206310440 @default.
- W3081869089 cites W4206519735 @default.
- W3081869089 cites W4244393449 @default.
- W3081869089 cites W874600112 @default.
- W3081869089 doi "https://doi.org/10.1109/access.2020.3021081" @default.
- W3081869089 hasPublicationYear "2020" @default.
- W3081869089 type Work @default.
- W3081869089 sameAs 3081869089 @default.
- W3081869089 citedByCount "5" @default.
- W3081869089 countsByYear W30818690892021 @default.
- W3081869089 countsByYear W30818690892022 @default.
- W3081869089 countsByYear W30818690892023 @default.
- W3081869089 crossrefType "journal-article" @default.
- W3081869089 hasAuthorship W3081869089A5046337047 @default.
- W3081869089 hasAuthorship W3081869089A5052639870 @default.
- W3081869089 hasBestOaLocation W30818690891 @default.
- W3081869089 hasConcept C102192266 @default.
- W3081869089 hasConcept C105795698 @default.
- W3081869089 hasConcept C116409475 @default.
- W3081869089 hasConcept C119857082 @default.
- W3081869089 hasConcept C121332964 @default.
- W3081869089 hasConcept C124066611 @default.
- W3081869089 hasConcept C13251829 @default.
- W3081869089 hasConcept C132525143 @default.
- W3081869089 hasConcept C153180895 @default.
- W3081869089 hasConcept C154771677 @default.
- W3081869089 hasConcept C154945302 @default.
- W3081869089 hasConcept C163716315 @default.
- W3081869089 hasConcept C179518139 @default.
- W3081869089 hasConcept C203776342 @default.
- W3081869089 hasConcept C32834561 @default.
- W3081869089 hasConcept C33923547 @default.
- W3081869089 hasConcept C41008148 @default.
- W3081869089 hasConcept C41608201 @default.
- W3081869089 hasConcept C56372850 @default.
- W3081869089 hasConcept C59404180 @default.
- W3081869089 hasConcept C62520636 @default.
- W3081869089 hasConcept C75564084 @default.
- W3081869089 hasConcept C77637269 @default.
- W3081869089 hasConcept C80444323 @default.
- W3081869089 hasConcept C97931131 @default.
- W3081869089 hasConceptScore W3081869089C102192266 @default.