Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081895781> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3081895781 abstract "Standard CMOS circuits are expected to be no longer able to satisfy nowadays demand for higher performances and lower power consumption. This commits to look for new solutions. Quantum computation, whose fundamental quantity of information is the qubit, is a thoroughly new way of thinking to electronics. There are at least two main reasons for which quantum computing is expected to broaden computation horizons. First, specific algorithms can be engineered, manipulating the probability amplitudes of different states, to exploit the quantum superposition principle and achieve high parallelism. Second, it is expected to be spontaneously suitable to simulate complex quantum physical systems, as large molecules. Quantum computing requires the cooperation of several scientific fields. The leading idea has been to highlight the operations and algorithms a quantum computer must be able to perform and, then, to propose a hardware solution, providing the rigorous physical treatment mandatory for a deep understanding and for an appropriate modelling, something which is hard to find in nowadays literature. Thus, the first chapters address the quantum algorithms, focusing on Grover's search algorithm and deriving, from fundamentals, the corresponding circuit. The latter is then described in Quantum Assembly (QASM), which can be seen as the quantum equivalent of VHDL, and simulated on IBM Q Experience. The following chapters deal with a possible physical implementation of quantum processors: the encoding of qubits on nuclear spins in diamagnetic molecules. When a static magnetic field is applied to a spin-1/2 nucleus, two well-defined energy eigenstates arise, as a result of the Zeeman effect. Each of them can be associated with a qubit eigenstate. Thanks to nuclear magnetic resonance principles, the probability with which one of the two eigenstates is measured can be handled by the superposition of a radio frequency field at the resonance frequency of the nucleus. This can be interpreted as a rotation of the spin, and so of the qubit, about the RF field and enables the execution of single qubit quantum gates, since they are simple rotations of the state vector. The two-qubit CNOT gate is obtained through the interaction of spins via J-coupling. Considering that these gates constitute a universal set, every quantum algorithm can theoretically be run on an NMR processor. Different nuclei have different resonant frequencies, but the addressing of a specific spin can be achieved also in homonuclear molecules, since the resonant frequency depends also on the nuclear environment (nuclear shielding). While unwanted J-couplings can be removed thanks to refocusing, spin decoherence and relaxation phenomena force an upper limit to the allowed timescale. A main advantage of NMR is that this timescale is long, even at room temperature. Conversely, scalability is still an issue. A simple heteronuclear MATLAB model, based on the relations derived from first principles in the thesis, is proposed to prove the feasibility of NMR quantum processors. The input technological parameters, as chemical shielding and J-coupling, can be computed resorting on ORCA, or obtained from experimental data. The model, able to run a universal set of quantum gates and simple algorithms, can be useful to find an optimal operating point as a compromise between molecule physical properties and the quantities which can be controlled by nowadays NMR instrumentation." @default.
- W3081895781 created "2020-09-08" @default.
- W3081895781 creator A5018161136 @default.
- W3081895781 date "2020-04-01" @default.
- W3081895781 modified "2023-09-23" @default.
- W3081895781 title "Modelling Molecular Technologies for Nuclear Magnetic Resonance Quantum Computing" @default.
- W3081895781 hasPublicationYear "2020" @default.
- W3081895781 type Work @default.
- W3081895781 sameAs 3081895781 @default.
- W3081895781 citedByCount "0" @default.
- W3081895781 crossrefType "journal-article" @default.
- W3081895781 hasAuthorship W3081895781A5018161136 @default.
- W3081895781 hasConcept C113775141 @default.
- W3081895781 hasConcept C121332964 @default.
- W3081895781 hasConcept C137019171 @default.
- W3081895781 hasConcept C169699857 @default.
- W3081895781 hasConcept C186468114 @default.
- W3081895781 hasConcept C190463098 @default.
- W3081895781 hasConcept C190474826 @default.
- W3081895781 hasConcept C192061203 @default.
- W3081895781 hasConcept C203087015 @default.
- W3081895781 hasConcept C41008148 @default.
- W3081895781 hasConcept C51003876 @default.
- W3081895781 hasConcept C58053490 @default.
- W3081895781 hasConcept C62520636 @default.
- W3081895781 hasConcept C80444323 @default.
- W3081895781 hasConcept C84114770 @default.
- W3081895781 hasConceptScore W3081895781C113775141 @default.
- W3081895781 hasConceptScore W3081895781C121332964 @default.
- W3081895781 hasConceptScore W3081895781C137019171 @default.
- W3081895781 hasConceptScore W3081895781C169699857 @default.
- W3081895781 hasConceptScore W3081895781C186468114 @default.
- W3081895781 hasConceptScore W3081895781C190463098 @default.
- W3081895781 hasConceptScore W3081895781C190474826 @default.
- W3081895781 hasConceptScore W3081895781C192061203 @default.
- W3081895781 hasConceptScore W3081895781C203087015 @default.
- W3081895781 hasConceptScore W3081895781C41008148 @default.
- W3081895781 hasConceptScore W3081895781C51003876 @default.
- W3081895781 hasConceptScore W3081895781C58053490 @default.
- W3081895781 hasConceptScore W3081895781C62520636 @default.
- W3081895781 hasConceptScore W3081895781C80444323 @default.
- W3081895781 hasConceptScore W3081895781C84114770 @default.
- W3081895781 hasLocation W30818957811 @default.
- W3081895781 hasOpenAccess W3081895781 @default.
- W3081895781 hasPrimaryLocation W30818957811 @default.
- W3081895781 hasRelatedWork W1525211242 @default.
- W3081895781 hasRelatedWork W1629173918 @default.
- W3081895781 hasRelatedWork W1632192303 @default.
- W3081895781 hasRelatedWork W1995719027 @default.
- W3081895781 hasRelatedWork W1997557109 @default.
- W3081895781 hasRelatedWork W2020815804 @default.
- W3081895781 hasRelatedWork W2077608956 @default.
- W3081895781 hasRelatedWork W211606437 @default.
- W3081895781 hasRelatedWork W2366723518 @default.
- W3081895781 hasRelatedWork W2767640054 @default.
- W3081895781 hasRelatedWork W2907563908 @default.
- W3081895781 hasRelatedWork W2908960476 @default.
- W3081895781 hasRelatedWork W3002891093 @default.
- W3081895781 hasRelatedWork W3021279437 @default.
- W3081895781 hasRelatedWork W3044412977 @default.
- W3081895781 hasRelatedWork W3098264721 @default.
- W3081895781 hasRelatedWork W3099621369 @default.
- W3081895781 hasRelatedWork W3100347129 @default.
- W3081895781 hasRelatedWork W3194852551 @default.
- W3081895781 hasRelatedWork W3014069325 @default.
- W3081895781 isParatext "false" @default.
- W3081895781 isRetracted "false" @default.
- W3081895781 magId "3081895781" @default.
- W3081895781 workType "article" @default.