Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081895850> ?p ?o ?g. }
- W3081895850 endingPage "109104" @default.
- W3081895850 startingPage "109104" @default.
- W3081895850 abstract "This study derives a uniaxial tensile flow from spherical indentation data using an artificial neural network (ANN) combined with finite element (FE) analysis. The feasibility of the FE-based simulations is confirmed through experimental indentation for various steels. Parametric studies of the FE simulation are performed to generate an ANN training database. An encoding for feature extraction and a hyperparameter optimization is implemented to design the ANN with high predictive performance. The indentation load–depth curves are converted into hardening parameters through the trained ANN. The predictive performance of the FE–ANN model using real-life indentation data is investigated in-depth with thorough error evaluation, and verified by uniaxial tensile tests. The emphasis is made that the mean absolute percentage error between the experimental and simulated indentation data is required to be meticulously controlled below 1% to accurately predict the tensile properties. The validations demonstrate that the applied FE–ANN modeling approach is very robust and captures the tensile properties well. Furthermore, the Taguchi orthogonal array (OA) method that can achieve high efficiency and fidelity with less training data is discussed. The FE–ANN model is concisely designed using the Taguchi OA method and can predict elasticity as well as plasticity." @default.
- W3081895850 created "2020-09-08" @default.
- W3081895850 creator A5003602922 @default.
- W3081895850 creator A5053474905 @default.
- W3081895850 creator A5057330520 @default.
- W3081895850 creator A5072124738 @default.
- W3081895850 creator A5081289911 @default.
- W3081895850 creator A5084894559 @default.
- W3081895850 date "2020-11-01" @default.
- W3081895850 modified "2023-10-14" @default.
- W3081895850 title "Prediction of uniaxial tensile flow using finite element-based indentation and optimized artificial neural networks" @default.
- W3081895850 cites W1570592190 @default.
- W3081895850 cites W1848211986 @default.
- W3081895850 cites W1972584137 @default.
- W3081895850 cites W1980303092 @default.
- W3081895850 cites W1980860381 @default.
- W3081895850 cites W1989551136 @default.
- W3081895850 cites W2001799483 @default.
- W3081895850 cites W2004320657 @default.
- W3081895850 cites W2009591336 @default.
- W3081895850 cites W2009785953 @default.
- W3081895850 cites W2013341759 @default.
- W3081895850 cites W2027408245 @default.
- W3081895850 cites W2034534469 @default.
- W3081895850 cites W2035485764 @default.
- W3081895850 cites W2036075045 @default.
- W3081895850 cites W2043761616 @default.
- W3081895850 cites W2048407303 @default.
- W3081895850 cites W2051263585 @default.
- W3081895850 cites W2052785359 @default.
- W3081895850 cites W2063882551 @default.
- W3081895850 cites W2070527568 @default.
- W3081895850 cites W2070700994 @default.
- W3081895850 cites W2071867908 @default.
- W3081895850 cites W2080525614 @default.
- W3081895850 cites W2080753239 @default.
- W3081895850 cites W2082951239 @default.
- W3081895850 cites W2085139803 @default.
- W3081895850 cites W2086221485 @default.
- W3081895850 cites W2086933933 @default.
- W3081895850 cites W2086942819 @default.
- W3081895850 cites W2087070363 @default.
- W3081895850 cites W2093139468 @default.
- W3081895850 cites W2095227070 @default.
- W3081895850 cites W2104158326 @default.
- W3081895850 cites W2112623135 @default.
- W3081895850 cites W2115481008 @default.
- W3081895850 cites W2118940449 @default.
- W3081895850 cites W2119680087 @default.
- W3081895850 cites W2132973318 @default.
- W3081895850 cites W2136029353 @default.
- W3081895850 cites W2150897841 @default.
- W3081895850 cites W2151501982 @default.
- W3081895850 cites W2161466425 @default.
- W3081895850 cites W2163491534 @default.
- W3081895850 cites W2164940204 @default.
- W3081895850 cites W2165587658 @default.
- W3081895850 cites W2167441267 @default.
- W3081895850 cites W2183590370 @default.
- W3081895850 cites W2183924721 @default.
- W3081895850 cites W2546319466 @default.
- W3081895850 cites W2744902596 @default.
- W3081895850 cites W2777965033 @default.
- W3081895850 cites W2790718906 @default.
- W3081895850 cites W2804808564 @default.
- W3081895850 cites W2902390267 @default.
- W3081895850 cites W2907366958 @default.
- W3081895850 cites W2916337960 @default.
- W3081895850 cites W2944192730 @default.
- W3081895850 cites W2945729486 @default.
- W3081895850 cites W2949373332 @default.
- W3081895850 cites W2964430329 @default.
- W3081895850 cites W2968207563 @default.
- W3081895850 cites W2968923792 @default.
- W3081895850 cites W2981038738 @default.
- W3081895850 cites W2982699779 @default.
- W3081895850 cites W2985063291 @default.
- W3081895850 cites W2985819655 @default.
- W3081895850 cites W2992302336 @default.
- W3081895850 cites W3001396333 @default.
- W3081895850 cites W3012417314 @default.
- W3081895850 doi "https://doi.org/10.1016/j.matdes.2020.109104" @default.
- W3081895850 hasPublicationYear "2020" @default.
- W3081895850 type Work @default.
- W3081895850 sameAs 3081895850 @default.
- W3081895850 citedByCount "32" @default.
- W3081895850 countsByYear W30818958502021 @default.
- W3081895850 countsByYear W30818958502022 @default.
- W3081895850 countsByYear W30818958502023 @default.
- W3081895850 crossrefType "journal-article" @default.
- W3081895850 hasAuthorship W3081895850A5003602922 @default.
- W3081895850 hasAuthorship W3081895850A5053474905 @default.
- W3081895850 hasAuthorship W3081895850A5057330520 @default.
- W3081895850 hasAuthorship W3081895850A5072124738 @default.
- W3081895850 hasAuthorship W3081895850A5081289911 @default.
- W3081895850 hasAuthorship W3081895850A5084894559 @default.
- W3081895850 hasBestOaLocation W30818958501 @default.
- W3081895850 hasConcept C105795698 @default.