Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081897985> ?p ?o ?g. }
- W3081897985 endingPage "5005" @default.
- W3081897985 startingPage "4984" @default.
- W3081897985 abstract "Steels are ubiquitous due to their affordability and the landscape of useful properties that can be generated for engineering applications. But to further expand the performance envelope, one must be able to understand and control microstructure development by alloying and processing. Here we use multiscale, advanced characterization to better understand the structural and chemical evolution of AISI 4340 steel after quenching and tempering (Q&T), including the role of quench rate and short-time, isothermal tempering below 573 K (300 °C), with an emphasis on carbide formation. We compare the microstructure and/or property changes produced by conventional tempering to those produced by higher temperature, short-time “rapid” tempering. We underscore that no single characterization technique can fully capture the subtle microstructure changes like carbon redistribution, transition carbide and/or cementite formation, and retained austenite decomposition that occur during Q&T. Only the use of multiple techniques begins to unravel these complexities. After controlled fast or slow quenching, η transition carbides clearly exist in the microstructure, likely associated with autotempering of this high martensite start temperature (Ms) steel. Isothermal tempering below 598 K (325 °C) results in the relief of carbon supersaturation in the martensite, primarily by the formation of η transition carbides that exhibit a range of carbon levels, seemingly without substitutional element partitioning between the carbide and matrix phases. Hagg transition carbide is present between 300 °C and 325 °C. After conventional tempering at or above 598 K (325 °C) for 2 h, cementite is predominant, but small amounts of cementite are also present in other conditions, even after quenching. Previous work has indicated that silicon (Si) and substitutional elements partition between the cementite, which initially forms under paraequilibrium conditions, and the matrix. Phosphorous (P) may also be preferentially located at cementite/matrix interfaces after high temperature tempering. Slower quench rates result in greater amounts of retained austenite compared to those after fast quenching, which we attribute to increased austenite stability resulting from “autopartitioning”. Rapid, high temperature tempering is also found to diminish tempered martensite embrittlement (TME) believed to be associated with the extent of austenite decomposition, resulting in mechanical properties not attainable by conventional tempering, which may have important implications with respect to industrial heat treatment processes like induction tempering. Controlling the amount and stability of retained austenite is not only relevant to the properties of Q&T steels, but also next-generation advanced high strength steels (AHSS) with austenite/martensite mixtures." @default.
- W3081897985 created "2020-09-08" @default.
- W3081897985 creator A5009876056 @default.
- W3081897985 creator A5013544049 @default.
- W3081897985 creator A5015331053 @default.
- W3081897985 creator A5022780595 @default.
- W3081897985 creator A5038278291 @default.
- W3081897985 creator A5041259560 @default.
- W3081897985 creator A5047365846 @default.
- W3081897985 creator A5051186701 @default.
- W3081897985 creator A5054313209 @default.
- W3081897985 creator A5059396819 @default.
- W3081897985 creator A5064811572 @default.
- W3081897985 creator A5066813104 @default.
- W3081897985 creator A5067519014 @default.
- W3081897985 creator A5068575989 @default.
- W3081897985 creator A5076033545 @default.
- W3081897985 creator A5091870268 @default.
- W3081897985 date "2020-08-27" @default.
- W3081897985 modified "2023-10-14" @default.
- W3081897985 title "Perspectives on Quenching and Tempering 4340 Steel" @default.
- W3081897985 cites W1964525409 @default.
- W3081897985 cites W1965786777 @default.
- W3081897985 cites W1967485833 @default.
- W3081897985 cites W1974234690 @default.
- W3081897985 cites W1976714440 @default.
- W3081897985 cites W1979234073 @default.
- W3081897985 cites W1987384037 @default.
- W3081897985 cites W1997743524 @default.
- W3081897985 cites W2003698565 @default.
- W3081897985 cites W2004693791 @default.
- W3081897985 cites W2004802525 @default.
- W3081897985 cites W2016007832 @default.
- W3081897985 cites W2019974774 @default.
- W3081897985 cites W2020868710 @default.
- W3081897985 cites W2026619676 @default.
- W3081897985 cites W2028073456 @default.
- W3081897985 cites W2033783451 @default.
- W3081897985 cites W2039089172 @default.
- W3081897985 cites W2044980462 @default.
- W3081897985 cites W2046499048 @default.
- W3081897985 cites W2046562445 @default.
- W3081897985 cites W2047443281 @default.
- W3081897985 cites W2048640957 @default.
- W3081897985 cites W2050121884 @default.
- W3081897985 cites W2053731163 @default.
- W3081897985 cites W2055419537 @default.
- W3081897985 cites W2058252573 @default.
- W3081897985 cites W2062136729 @default.
- W3081897985 cites W2070665021 @default.
- W3081897985 cites W2071160340 @default.
- W3081897985 cites W2074797139 @default.
- W3081897985 cites W2075126350 @default.
- W3081897985 cites W2078391474 @default.
- W3081897985 cites W2085111401 @default.
- W3081897985 cites W2087433178 @default.
- W3081897985 cites W2094478513 @default.
- W3081897985 cites W2094518776 @default.
- W3081897985 cites W2279804573 @default.
- W3081897985 cites W2343943335 @default.
- W3081897985 cites W2345316087 @default.
- W3081897985 cites W2521465531 @default.
- W3081897985 cites W2564386028 @default.
- W3081897985 cites W2580767461 @default.
- W3081897985 cites W2610785841 @default.
- W3081897985 cites W2761212415 @default.
- W3081897985 cites W2762103638 @default.
- W3081897985 cites W2781959313 @default.
- W3081897985 cites W2791509883 @default.
- W3081897985 cites W2811230714 @default.
- W3081897985 cites W2885271426 @default.
- W3081897985 cites W2947108316 @default.
- W3081897985 cites W2986620253 @default.
- W3081897985 cites W2999723625 @default.
- W3081897985 cites W3009077045 @default.
- W3081897985 cites W4232036991 @default.
- W3081897985 cites W4247095671 @default.
- W3081897985 cites W4253119899 @default.
- W3081897985 doi "https://doi.org/10.1007/s11661-020-05972-1" @default.
- W3081897985 hasPublicationYear "2020" @default.
- W3081897985 type Work @default.
- W3081897985 sameAs 3081897985 @default.
- W3081897985 citedByCount "26" @default.
- W3081897985 countsByYear W30818979852020 @default.
- W3081897985 countsByYear W30818979852021 @default.
- W3081897985 countsByYear W30818979852022 @default.
- W3081897985 countsByYear W30818979852023 @default.
- W3081897985 crossrefType "journal-article" @default.
- W3081897985 hasAuthorship W3081897985A5009876056 @default.
- W3081897985 hasAuthorship W3081897985A5013544049 @default.
- W3081897985 hasAuthorship W3081897985A5015331053 @default.
- W3081897985 hasAuthorship W3081897985A5022780595 @default.
- W3081897985 hasAuthorship W3081897985A5038278291 @default.
- W3081897985 hasAuthorship W3081897985A5041259560 @default.
- W3081897985 hasAuthorship W3081897985A5047365846 @default.
- W3081897985 hasAuthorship W3081897985A5051186701 @default.
- W3081897985 hasAuthorship W3081897985A5054313209 @default.
- W3081897985 hasAuthorship W3081897985A5059396819 @default.