Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081900151> ?p ?o ?g. }
- W3081900151 endingPage "1079" @default.
- W3081900151 startingPage "1079" @default.
- W3081900151 abstract "Data-based process monitoring methods have received tremendous attention in recent years, and modern industrial process data often exhibit dynamic and nonlinear characteristics. Traditional autoencoders, such as stacked denoising autoencoders (SDAEs), have excellent nonlinear feature extraction capabilities, but they ignore the dynamic correlation between sample data. Feature extraction based on manifold learning using spatial or temporal neighbors has been widely used in dynamic process monitoring in recent years, but most of them use linear features and do not take into account the complex nonlinearities of industrial processes. Therefore, a fault detection scheme based on temporal-spatial neighborhood enhanced sparse autoencoder is proposed in this paper. Firstly, it selects the temporal neighborhood and spatial neighborhood of the sample at the current time within the time window with a certain length, the spatial similarity and time serial correlation are used for weighted reconstruction, and the reconstruction combines the current sample as the input of the sparse stack autoencoder (SSAE) to extract the correlation features between the current sample and the neighborhood information. Two statistics are constructed for fault detection. Considering that both types of neighborhood information contain spatial-temporal structural features, Bayesian fusion strategy is used to integrate the two parts of the detection results. Finally, the superiority of the method in this paper is illustrated by a numerical example and the Tennessee Eastman process." @default.
- W3081900151 created "2020-09-08" @default.
- W3081900151 creator A5002718892 @default.
- W3081900151 creator A5006084228 @default.
- W3081900151 creator A5055062255 @default.
- W3081900151 creator A5091670895 @default.
- W3081900151 date "2020-09-01" @default.
- W3081900151 modified "2023-09-30" @default.
- W3081900151 title "Temporal-Spatial Neighborhood Enhanced Sparse Autoencoder for Nonlinear Dynamic Process Monitoring" @default.
- W3081900151 cites W1997208277 @default.
- W3081900151 cites W2030927677 @default.
- W3081900151 cites W2032935412 @default.
- W3081900151 cites W2049740619 @default.
- W3081900151 cites W2077791644 @default.
- W3081900151 cites W2078650275 @default.
- W3081900151 cites W2161365042 @default.
- W3081900151 cites W2201427885 @default.
- W3081900151 cites W2289639555 @default.
- W3081900151 cites W2318574684 @default.
- W3081900151 cites W2399774368 @default.
- W3081900151 cites W2442657908 @default.
- W3081900151 cites W2471656365 @default.
- W3081900151 cites W2561662420 @default.
- W3081900151 cites W2616566322 @default.
- W3081900151 cites W2726291047 @default.
- W3081900151 cites W2757109865 @default.
- W3081900151 cites W2788805965 @default.
- W3081900151 cites W2890435229 @default.
- W3081900151 cites W2895407936 @default.
- W3081900151 cites W2897745724 @default.
- W3081900151 cites W2904132078 @default.
- W3081900151 cites W2907896701 @default.
- W3081900151 cites W2942496699 @default.
- W3081900151 cites W2948406239 @default.
- W3081900151 cites W2952598456 @default.
- W3081900151 cites W2953560522 @default.
- W3081900151 cites W2969723668 @default.
- W3081900151 cites W2970522844 @default.
- W3081900151 cites W2977049471 @default.
- W3081900151 cites W2982556568 @default.
- W3081900151 cites W2983949338 @default.
- W3081900151 cites W2989963236 @default.
- W3081900151 cites W2995114611 @default.
- W3081900151 cites W2995860668 @default.
- W3081900151 cites W3000569854 @default.
- W3081900151 cites W3047865406 @default.
- W3081900151 cites W3148158941 @default.
- W3081900151 doi "https://doi.org/10.3390/pr8091079" @default.
- W3081900151 hasPublicationYear "2020" @default.
- W3081900151 type Work @default.
- W3081900151 sameAs 3081900151 @default.
- W3081900151 citedByCount "16" @default.
- W3081900151 countsByYear W30819001512021 @default.
- W3081900151 countsByYear W30819001512022 @default.
- W3081900151 countsByYear W30819001512023 @default.
- W3081900151 crossrefType "journal-article" @default.
- W3081900151 hasAuthorship W3081900151A5002718892 @default.
- W3081900151 hasAuthorship W3081900151A5006084228 @default.
- W3081900151 hasAuthorship W3081900151A5055062255 @default.
- W3081900151 hasAuthorship W3081900151A5091670895 @default.
- W3081900151 hasBestOaLocation W30819001511 @default.
- W3081900151 hasConcept C101738243 @default.
- W3081900151 hasConcept C108583219 @default.
- W3081900151 hasConcept C111919701 @default.
- W3081900151 hasConcept C121332964 @default.
- W3081900151 hasConcept C124101348 @default.
- W3081900151 hasConcept C138885662 @default.
- W3081900151 hasConcept C150060386 @default.
- W3081900151 hasConcept C152745839 @default.
- W3081900151 hasConcept C153180895 @default.
- W3081900151 hasConcept C154945302 @default.
- W3081900151 hasConcept C158622935 @default.
- W3081900151 hasConcept C172707124 @default.
- W3081900151 hasConcept C185592680 @default.
- W3081900151 hasConcept C198531522 @default.
- W3081900151 hasConcept C2776401178 @default.
- W3081900151 hasConcept C41008148 @default.
- W3081900151 hasConcept C41895202 @default.
- W3081900151 hasConcept C43617362 @default.
- W3081900151 hasConcept C52622490 @default.
- W3081900151 hasConcept C62520636 @default.
- W3081900151 hasConcept C76155785 @default.
- W3081900151 hasConcept C98045186 @default.
- W3081900151 hasConceptScore W3081900151C101738243 @default.
- W3081900151 hasConceptScore W3081900151C108583219 @default.
- W3081900151 hasConceptScore W3081900151C111919701 @default.
- W3081900151 hasConceptScore W3081900151C121332964 @default.
- W3081900151 hasConceptScore W3081900151C124101348 @default.
- W3081900151 hasConceptScore W3081900151C138885662 @default.
- W3081900151 hasConceptScore W3081900151C150060386 @default.
- W3081900151 hasConceptScore W3081900151C152745839 @default.
- W3081900151 hasConceptScore W3081900151C153180895 @default.
- W3081900151 hasConceptScore W3081900151C154945302 @default.
- W3081900151 hasConceptScore W3081900151C158622935 @default.
- W3081900151 hasConceptScore W3081900151C172707124 @default.
- W3081900151 hasConceptScore W3081900151C185592680 @default.
- W3081900151 hasConceptScore W3081900151C198531522 @default.
- W3081900151 hasConceptScore W3081900151C2776401178 @default.