Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081912112> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3081912112 abstract "Traumatic brain injury (TBI) is a leading cause of death and disability yet treatment strategies remain elusive. Advances in machine learning present exciting opportunities for developing personalized medicine and informing laboratory research. However, their feasibility has yet to be widely assessed in animal research where data are typically limited or in the TBI field where each patient presents with a unique injury. The Operation Brain Trauma Therapy (OBTT) has amassed an animal dataset that spans multiple types of injury, treatment strategies, behavioral assessments, histological measures, and biomarker screenings. This paper aims to analyze these data using supervised learning techniques for the first time by partitioning the dataset into acute input metrics (i.e. 7 days post-injury) and a defined recovery outcome (i.e. memory retention). Preprocessing is then applied to transform the raw OBTT dataset, e.g. developing a class attribute by histogram binning, eliminating borderline cases, and applying principal component analysis (PCA). We find that these steps are also useful in establishing a treatment ranking; Minocycline, a therapy with no significant findings in the OBTT analyses, yields the highest percentage recovery in our ranking. Furthermore, of the seven classifiers we have evaluated, Naïve Bayes achieves the best performance (67%) and yields significant improvement over our baseline model on the preprocessed dataset with borderline elimination. We also investigate the effect of testing on individual treatment groups to evaluate which groups are difficult to classify, and note the interpretive qualities of our model that can be clinically relevant.Clinical Relevance- These studies establish methods for better analyzing multivariate functional recovery and understanding which measures affect prognosis following traumatic brain injury." @default.
- W3081912112 created "2020-09-08" @default.
- W3081912112 creator A5004229694 @default.
- W3081912112 creator A5011373172 @default.
- W3081912112 creator A5016221979 @default.
- W3081912112 creator A5028553478 @default.
- W3081912112 creator A5057601283 @default.
- W3081912112 creator A5070033769 @default.
- W3081912112 date "2020-07-01" @default.
- W3081912112 modified "2023-10-01" @default.
- W3081912112 title "Development and Evaluation of Machine Learning Models for Recovery Prediction after Treatment for Traumatic Brain Injury" @default.
- W3081912112 cites W2004770795 @default.
- W3081912112 cites W2087412997 @default.
- W3081912112 cites W2162660365 @default.
- W3081912112 cites W2301044584 @default.
- W3081912112 cites W2588765690 @default.
- W3081912112 cites W2761529114 @default.
- W3081912112 cites W2796386379 @default.
- W3081912112 cites W2902620820 @default.
- W3081912112 doi "https://doi.org/10.1109/embc44109.2020.9175658" @default.
- W3081912112 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33018494" @default.
- W3081912112 hasPublicationYear "2020" @default.
- W3081912112 type Work @default.
- W3081912112 sameAs 3081912112 @default.
- W3081912112 citedByCount "6" @default.
- W3081912112 countsByYear W30819121122021 @default.
- W3081912112 countsByYear W30819121122023 @default.
- W3081912112 crossrefType "proceedings-article" @default.
- W3081912112 hasAuthorship W3081912112A5004229694 @default.
- W3081912112 hasAuthorship W3081912112A5011373172 @default.
- W3081912112 hasAuthorship W3081912112A5016221979 @default.
- W3081912112 hasAuthorship W3081912112A5028553478 @default.
- W3081912112 hasAuthorship W3081912112A5057601283 @default.
- W3081912112 hasAuthorship W3081912112A5070033769 @default.
- W3081912112 hasConcept C118552586 @default.
- W3081912112 hasConcept C119857082 @default.
- W3081912112 hasConcept C154945302 @default.
- W3081912112 hasConcept C189430467 @default.
- W3081912112 hasConcept C2781017439 @default.
- W3081912112 hasConcept C41008148 @default.
- W3081912112 hasConcept C71924100 @default.
- W3081912112 hasConceptScore W3081912112C118552586 @default.
- W3081912112 hasConceptScore W3081912112C119857082 @default.
- W3081912112 hasConceptScore W3081912112C154945302 @default.
- W3081912112 hasConceptScore W3081912112C189430467 @default.
- W3081912112 hasConceptScore W3081912112C2781017439 @default.
- W3081912112 hasConceptScore W3081912112C41008148 @default.
- W3081912112 hasConceptScore W3081912112C71924100 @default.
- W3081912112 hasLocation W30819121121 @default.
- W3081912112 hasLocation W30819121122 @default.
- W3081912112 hasOpenAccess W3081912112 @default.
- W3081912112 hasPrimaryLocation W30819121121 @default.
- W3081912112 hasRelatedWork W2961085424 @default.
- W3081912112 hasRelatedWork W3046775127 @default.
- W3081912112 hasRelatedWork W3170094116 @default.
- W3081912112 hasRelatedWork W4205958290 @default.
- W3081912112 hasRelatedWork W4285260836 @default.
- W3081912112 hasRelatedWork W4286629047 @default.
- W3081912112 hasRelatedWork W4306321456 @default.
- W3081912112 hasRelatedWork W4306674287 @default.
- W3081912112 hasRelatedWork W4386462264 @default.
- W3081912112 hasRelatedWork W4224009465 @default.
- W3081912112 isParatext "false" @default.
- W3081912112 isRetracted "false" @default.
- W3081912112 magId "3081912112" @default.
- W3081912112 workType "article" @default.