Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081927722> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3081927722 abstract "Despite recent advancements in the field of pattern recognition-based myoelectric control, the collection of a high quality training set remains a challenge limiting its adoption. This paper proposes a framework for a possible solution by augmenting short training protocols with subject-specific synthetic electromyography (EMG) data generated using a deep generative network, known as SinGAN. The aim of this work is to produce high quality synthetic data that could improve classification accuracy when combined with a limited training protocol. SinGAN was used to generate 1000 synthetic windows of EMG data from a single window of six different motions, and results were evaluated qualitatively, quantitatively, and in a classification task. Qualitative assessment of synthetic data was conducted via visual inspection of principal component analysis projections of real and synthetic feature space. Quantitative assessment of synthetic data revealed 11 of 32 synthetic features had similar location and scale to real features (using univariate two-sample Lepage tests); whereas multivariate distributions were found to be statistically different (p <0.05). Finally, the addition of these synthetic data to a brief training set of real data significantly improved classification accuracy in a cross-validation testing scheme by 5.4% (p <0.001)." @default.
- W3081927722 created "2020-09-08" @default.
- W3081927722 creator A5001388935 @default.
- W3081927722 creator A5025818642 @default.
- W3081927722 creator A5035775826 @default.
- W3081927722 date "2020-07-01" @default.
- W3081927722 modified "2023-10-01" @default.
- W3081927722 title "Feasibility of Data-driven EMG Signal Generation using a Deep Generative Model" @default.
- W3081927722 cites W2038715090 @default.
- W3081927722 cites W2045193041 @default.
- W3081927722 cites W2057216062 @default.
- W3081927722 cites W2105800737 @default.
- W3081927722 cites W2107287089 @default.
- W3081927722 cites W2123167643 @default.
- W3081927722 cites W2162613571 @default.
- W3081927722 cites W2654238657 @default.
- W3081927722 cites W2906843149 @default.
- W3081927722 cites W2921353139 @default.
- W3081927722 cites W2945179872 @default.
- W3081927722 cites W2982041717 @default.
- W3081927722 doi "https://doi.org/10.1109/embc44109.2020.9176072" @default.
- W3081927722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33018818" @default.
- W3081927722 hasPublicationYear "2020" @default.
- W3081927722 type Work @default.
- W3081927722 sameAs 3081927722 @default.
- W3081927722 citedByCount "5" @default.
- W3081927722 countsByYear W30819277222022 @default.
- W3081927722 countsByYear W30819277222023 @default.
- W3081927722 crossrefType "proceedings-article" @default.
- W3081927722 hasAuthorship W3081927722A5001388935 @default.
- W3081927722 hasAuthorship W3081927722A5025818642 @default.
- W3081927722 hasAuthorship W3081927722A5035775826 @default.
- W3081927722 hasConcept C119857082 @default.
- W3081927722 hasConcept C124101348 @default.
- W3081927722 hasConcept C153180895 @default.
- W3081927722 hasConcept C154945302 @default.
- W3081927722 hasConcept C160920958 @default.
- W3081927722 hasConcept C161584116 @default.
- W3081927722 hasConcept C199163554 @default.
- W3081927722 hasConcept C27438332 @default.
- W3081927722 hasConcept C41008148 @default.
- W3081927722 hasConcept C58489278 @default.
- W3081927722 hasConceptScore W3081927722C119857082 @default.
- W3081927722 hasConceptScore W3081927722C124101348 @default.
- W3081927722 hasConceptScore W3081927722C153180895 @default.
- W3081927722 hasConceptScore W3081927722C154945302 @default.
- W3081927722 hasConceptScore W3081927722C160920958 @default.
- W3081927722 hasConceptScore W3081927722C161584116 @default.
- W3081927722 hasConceptScore W3081927722C199163554 @default.
- W3081927722 hasConceptScore W3081927722C27438332 @default.
- W3081927722 hasConceptScore W3081927722C41008148 @default.
- W3081927722 hasConceptScore W3081927722C58489278 @default.
- W3081927722 hasLocation W30819277221 @default.
- W3081927722 hasLocation W30819277222 @default.
- W3081927722 hasOpenAccess W3081927722 @default.
- W3081927722 hasPrimaryLocation W30819277221 @default.
- W3081927722 hasRelatedWork W12909966 @default.
- W3081927722 hasRelatedWork W1579131723 @default.
- W3081927722 hasRelatedWork W1791438223 @default.
- W3081927722 hasRelatedWork W2025268411 @default.
- W3081927722 hasRelatedWork W2091080958 @default.
- W3081927722 hasRelatedWork W2151819241 @default.
- W3081927722 hasRelatedWork W2230970864 @default.
- W3081927722 hasRelatedWork W2380927352 @default.
- W3081927722 hasRelatedWork W2475353914 @default.
- W3081927722 hasRelatedWork W51065039 @default.
- W3081927722 isParatext "false" @default.
- W3081927722 isRetracted "false" @default.
- W3081927722 magId "3081927722" @default.
- W3081927722 workType "article" @default.