Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081945624> ?p ?o ?g. }
- W3081945624 abstract "The recent explosion of machine learning (ML) and artificial intelligence (AI) shows great potential in the breakthrough of metal additive manufacturing (AM) process modeling. However, the success of conventional machine learning tools in data science is primarily attributed to the unprecedented large amount of labeled data-sets (big data), which can be either obtained by experiments or first-principle simulations. Unfortunately, these labeled data-sets are expensive to obtain in AM due to the high expense of the AM experiments and prohibitive computational cost of high-fidelity simulations. We propose a physics-informed neural network (PINN) framework that fuses both data and first physical principles, including conservation laws of momentum, mass, and energy, into the neural network to inform the learning processes. To the best knowledge of the authors, this is the first application of PINN to three dimensional AM processes modeling. Besides, we propose a hard-type approach for Dirichlet boundary conditions (BCs) based on a Heaviside function, which can not only enforce the BCs but also accelerate the learning process. The PINN framework is applied to two representative metal manufacturing problems, including the 2018 NIST AM-Benchmark test series. We carefully assess the performance of the PINN model by comparing the predictions with available experimental data and high-fidelity simulation results. The investigations show that the PINN, owed to the additional physical knowledge, can accurately predict the temperature and melt pool dynamics during metal AM processes with only a moderate amount of labeled data-sets. The foray of PINN to metal AM shows the great potential of physics-informed deep learning for broader applications to advanced manufacturing." @default.
- W3081945624 created "2020-09-08" @default.
- W3081945624 creator A5017759050 @default.
- W3081945624 creator A5025179327 @default.
- W3081945624 creator A5086332962 @default.
- W3081945624 date "2020-07-28" @default.
- W3081945624 modified "2023-10-16" @default.
- W3081945624 title "Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks" @default.
- W3081945624 cites W1019891831 @default.
- W3081945624 cites W1522301498 @default.
- W3081945624 cites W1606347560 @default.
- W3081945624 cites W1663973292 @default.
- W3081945624 cites W179875071 @default.
- W3081945624 cites W1972457400 @default.
- W3081945624 cites W1973963306 @default.
- W3081945624 cites W2007095458 @default.
- W3081945624 cites W2014317103 @default.
- W3081945624 cites W2015654870 @default.
- W3081945624 cites W2025801959 @default.
- W3081945624 cites W2028815369 @default.
- W3081945624 cites W2032314804 @default.
- W3081945624 cites W2045327490 @default.
- W3081945624 cites W2047197763 @default.
- W3081945624 cites W2048074073 @default.
- W3081945624 cites W2065993835 @default.
- W3081945624 cites W2071273485 @default.
- W3081945624 cites W2074722368 @default.
- W3081945624 cites W2084068210 @default.
- W3081945624 cites W2088230448 @default.
- W3081945624 cites W2094921694 @default.
- W3081945624 cites W2094936862 @default.
- W3081945624 cites W2101175319 @default.
- W3081945624 cites W2102492119 @default.
- W3081945624 cites W2140153041 @default.
- W3081945624 cites W2140190241 @default.
- W3081945624 cites W2144354855 @default.
- W3081945624 cites W2155893237 @default.
- W3081945624 cites W2279780730 @default.
- W3081945624 cites W2338304894 @default.
- W3081945624 cites W2342277278 @default.
- W3081945624 cites W2399296970 @default.
- W3081945624 cites W2434883779 @default.
- W3081945624 cites W2523246573 @default.
- W3081945624 cites W2546371273 @default.
- W3081945624 cites W2565516711 @default.
- W3081945624 cites W2573864470 @default.
- W3081945624 cites W2588910710 @default.
- W3081945624 cites W2622110699 @default.
- W3081945624 cites W2676821855 @default.
- W3081945624 cites W2688991736 @default.
- W3081945624 cites W2751636627 @default.
- W3081945624 cites W2751645897 @default.
- W3081945624 cites W2770759248 @default.
- W3081945624 cites W2777058830 @default.
- W3081945624 cites W2782924686 @default.
- W3081945624 cites W2791601117 @default.
- W3081945624 cites W2884529566 @default.
- W3081945624 cites W2891455536 @default.
- W3081945624 cites W2898138389 @default.
- W3081945624 cites W2899283552 @default.
- W3081945624 cites W2900477816 @default.
- W3081945624 cites W2910034952 @default.
- W3081945624 cites W2917573274 @default.
- W3081945624 cites W2936929192 @default.
- W3081945624 cites W2938472310 @default.
- W3081945624 cites W2948230027 @default.
- W3081945624 cites W2951548721 @default.
- W3081945624 cites W2954536074 @default.
- W3081945624 cites W2962727772 @default.
- W3081945624 cites W2970971581 @default.
- W3081945624 cites W2973886134 @default.
- W3081945624 cites W2989198501 @default.
- W3081945624 cites W2999351056 @default.
- W3081945624 cites W3003922491 @default.
- W3081945624 cites W3004162584 @default.
- W3081945624 cites W3007719021 @default.
- W3081945624 cites W3010694735 @default.
- W3081945624 cites W3012417314 @default.
- W3081945624 cites W3014468003 @default.
- W3081945624 cites W3023745505 @default.
- W3081945624 cites W3034254403 @default.
- W3081945624 cites W3039161970 @default.
- W3081945624 cites W3043875836 @default.
- W3081945624 cites W3101260193 @default.
- W3081945624 doi "https://doi.org/10.48550/arxiv.2008.13547" @default.
- W3081945624 hasPublicationYear "2020" @default.
- W3081945624 type Work @default.
- W3081945624 sameAs 3081945624 @default.
- W3081945624 citedByCount "0" @default.
- W3081945624 crossrefType "posted-content" @default.
- W3081945624 hasAuthorship W3081945624A5017759050 @default.
- W3081945624 hasAuthorship W3081945624A5025179327 @default.
- W3081945624 hasAuthorship W3081945624A5086332962 @default.
- W3081945624 hasBestOaLocation W30819456241 @default.
- W3081945624 hasConcept C105795698 @default.
- W3081945624 hasConcept C111919701 @default.
- W3081945624 hasConcept C119857082 @default.
- W3081945624 hasConcept C127413603 @default.
- W3081945624 hasConcept C13280743 @default.
- W3081945624 hasConcept C13736549 @default.