Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081990168> ?p ?o ?g. }
- W3081990168 endingPage "100730" @default.
- W3081990168 startingPage "100730" @default.
- W3081990168 abstract "Big East River and Black River watersheds in Northern Ontario, Canada as snow-dominated, data-poor case studies. In this study, seven lumped conceptual models were thoroughly compared in order to determine the best performing model for reproducing different components of the hydrograph, including low and high flows in data-poor catchments. All models were calibrated using five various objective functions for reducing the effects of calibration process on models’ performance. Additionally, the effects of precipitation, an important factor, particularly in data-scarce regions, were assessed by comparing two precipitation input scenarios: (1) low-density ground-based gauge data, and (2) the Canadian Precipitation Analysis (CaPA) data. The final goal of this study was to compare the effects of using either the Degree-Day or SNOW17 snowmelt estimation methods on the accuracy of streamflow simulation. The results indicate that, in general, MACHBV is the best performing model at simulating daily streamflow in a data-poor watershed, and both SACSMA and GR4J can provide competitive results. Additionally, MACHBV and GR4J are superior to the other conceptual models regarding high flow simulation. Moreover, it was found that incorporating the more complex SNOW17 snowmelt estimation method did not always enhance the performance of the hydrologic models. Finally, the results also confirmed the reliability of the CaPA data as an alternative forcing precipitation in the case of low data availability." @default.
- W3081990168 created "2020-09-08" @default.
- W3081990168 creator A5010665825 @default.
- W3081990168 creator A5086011977 @default.
- W3081990168 date "2020-10-01" @default.
- W3081990168 modified "2023-09-30" @default.
- W3081990168 title "Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada" @default.
- W3081990168 cites W1589426742 @default.
- W3081990168 cites W1788068703 @default.
- W3081990168 cites W1836749255 @default.
- W3081990168 cites W1882439680 @default.
- W3081990168 cites W1898919587 @default.
- W3081990168 cites W1964248494 @default.
- W3081990168 cites W1965563786 @default.
- W3081990168 cites W1971398942 @default.
- W3081990168 cites W1975265747 @default.
- W3081990168 cites W1978576465 @default.
- W3081990168 cites W1980490174 @default.
- W3081990168 cites W1981320000 @default.
- W3081990168 cites W1988848014 @default.
- W3081990168 cites W1994771468 @default.
- W3081990168 cites W2002115844 @default.
- W3081990168 cites W2002692724 @default.
- W3081990168 cites W2003696872 @default.
- W3081990168 cites W2010624461 @default.
- W3081990168 cites W2015932014 @default.
- W3081990168 cites W2017618012 @default.
- W3081990168 cites W2021362548 @default.
- W3081990168 cites W2023005676 @default.
- W3081990168 cites W2026774287 @default.
- W3081990168 cites W2033904036 @default.
- W3081990168 cites W2036053424 @default.
- W3081990168 cites W2039983154 @default.
- W3081990168 cites W2045535682 @default.
- W3081990168 cites W2045847130 @default.
- W3081990168 cites W2050112273 @default.
- W3081990168 cites W2050590406 @default.
- W3081990168 cites W2051073255 @default.
- W3081990168 cites W2051739928 @default.
- W3081990168 cites W2051877731 @default.
- W3081990168 cites W2053203198 @default.
- W3081990168 cites W2062758076 @default.
- W3081990168 cites W2066874767 @default.
- W3081990168 cites W2072183993 @default.
- W3081990168 cites W2079301395 @default.
- W3081990168 cites W2090222315 @default.
- W3081990168 cites W2092568256 @default.
- W3081990168 cites W2093713407 @default.
- W3081990168 cites W2096169220 @default.
- W3081990168 cites W2097854271 @default.
- W3081990168 cites W2110082949 @default.
- W3081990168 cites W2129345929 @default.
- W3081990168 cites W2137953169 @default.
- W3081990168 cites W2138763184 @default.
- W3081990168 cites W2145517480 @default.
- W3081990168 cites W2148615810 @default.
- W3081990168 cites W2177880339 @default.
- W3081990168 cites W2202444713 @default.
- W3081990168 cites W2260849020 @default.
- W3081990168 cites W2279877289 @default.
- W3081990168 cites W2285397915 @default.
- W3081990168 cites W2409832760 @default.
- W3081990168 cites W2487136384 @default.
- W3081990168 cites W2559766834 @default.
- W3081990168 cites W2582994346 @default.
- W3081990168 cites W2590578877 @default.
- W3081990168 cites W2616471584 @default.
- W3081990168 cites W2622279720 @default.
- W3081990168 cites W2767154044 @default.
- W3081990168 cites W2768749279 @default.
- W3081990168 cites W2883837588 @default.
- W3081990168 cites W2898121743 @default.
- W3081990168 cites W2943636208 @default.
- W3081990168 cites W2955467387 @default.
- W3081990168 cites W2958354326 @default.
- W3081990168 cites W2969844002 @default.
- W3081990168 cites W2969844591 @default.
- W3081990168 cites W2985114751 @default.
- W3081990168 cites W2990224529 @default.
- W3081990168 cites W2995675009 @default.
- W3081990168 cites W3007323833 @default.
- W3081990168 cites W751718722 @default.
- W3081990168 doi "https://doi.org/10.1016/j.ejrh.2020.100730" @default.
- W3081990168 hasPublicationYear "2020" @default.
- W3081990168 type Work @default.
- W3081990168 sameAs 3081990168 @default.
- W3081990168 citedByCount "27" @default.
- W3081990168 countsByYear W30819901682021 @default.
- W3081990168 countsByYear W30819901682022 @default.
- W3081990168 countsByYear W30819901682023 @default.
- W3081990168 crossrefType "journal-article" @default.
- W3081990168 hasAuthorship W3081990168A5010665825 @default.
- W3081990168 hasAuthorship W3081990168A5086011977 @default.
- W3081990168 hasBestOaLocation W30819901681 @default.
- W3081990168 hasConcept C105795698 @default.
- W3081990168 hasConcept C107054158 @default.
- W3081990168 hasConcept C119857082 @default.
- W3081990168 hasConcept C121332964 @default.