Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082025683> ?p ?o ?g. }
- W3082025683 endingPage "5161" @default.
- W3082025683 startingPage "5149" @default.
- W3082025683 abstract "Time series prediction (TSP) of land use/land cover (LULC) is an important scientific issue, but forecasting LULC changes at lead times of multiple time steps at fine time scales remains problematic. Especially in the context of current rapid economic and social development, the traditional one-step prediction models with a five-year or ten-year cycle cannot meet the application needs of land management departments. Temporal convolutional networks (TCNs) outperform other traditional TSP approaches. Therefore, we have proposed a pixel-level multistep TSP (pMTSP) approach that employs TCNs to carry out multistep prediction of land cover from dense time series remote sensing images, making up for the shortcomings of low accuracy, coarse time granularity, and labor-consuming of the current LULC prediction approaches. The results of comparative experiments with seasonal-trend decomposition procedure based on LOcally wEighted regreSsion Smoother and autoregression (STL-AR), seasonal autoregressive integrated moving average, and dynamic harmonics regression using single enhanced vegetation index time series, as well as the comparative experiment with the cellular automata-Markov model using real moderate resolution imaging spectroradiometer image time series, showed that the pMTSP can accurately extrapolate the change trend of the time series in fine-scale and obtain highly consistent prediction results with actual data, performing better than the other four contrasting algorithms in 23-step LULC prediction. The pMTSP can be used for multistep, fine-time-scale, and long time-series land cover prediction, which is of great guiding significance for the sustainable development and utilization of land resources." @default.
- W3082025683 created "2020-09-08" @default.
- W3082025683 creator A5023118644 @default.
- W3082025683 creator A5040099999 @default.
- W3082025683 creator A5047516173 @default.
- W3082025683 creator A5069537423 @default.
- W3082025683 date "2020-01-01" @default.
- W3082025683 modified "2023-10-16" @default.
- W3082025683 title "Multistep Prediction of Land Cover From Dense Time Series Remote Sensing Images With Temporal Convolutional Networks" @default.
- W3082025683 cites W1212601590 @default.
- W3082025683 cites W1830303235 @default.
- W3082025683 cites W1966676388 @default.
- W3082025683 cites W1982121855 @default.
- W3082025683 cites W1994784561 @default.
- W3082025683 cites W1996905547 @default.
- W3082025683 cites W2002280144 @default.
- W3082025683 cites W2020402473 @default.
- W3082025683 cites W2020520344 @default.
- W3082025683 cites W2028240797 @default.
- W3082025683 cites W2037274813 @default.
- W3082025683 cites W2054611379 @default.
- W3082025683 cites W2055718260 @default.
- W3082025683 cites W2062487775 @default.
- W3082025683 cites W2084830040 @default.
- W3082025683 cites W2087432101 @default.
- W3082025683 cites W2092141993 @default.
- W3082025683 cites W2126250722 @default.
- W3082025683 cites W2135822449 @default.
- W3082025683 cites W2141984324 @default.
- W3082025683 cites W2161336494 @default.
- W3082025683 cites W2168341506 @default.
- W3082025683 cites W2266902344 @default.
- W3082025683 cites W2437953928 @default.
- W3082025683 cites W2508457857 @default.
- W3082025683 cites W2548390752 @default.
- W3082025683 cites W2550143307 @default.
- W3082025683 cites W2581906016 @default.
- W3082025683 cites W2617738695 @default.
- W3082025683 cites W2734530555 @default.
- W3082025683 cites W2770429219 @default.
- W3082025683 cites W2783165089 @default.
- W3082025683 cites W2803620309 @default.
- W3082025683 cites W2803946774 @default.
- W3082025683 cites W2884455106 @default.
- W3082025683 cites W2897113013 @default.
- W3082025683 cites W2915971115 @default.
- W3082025683 cites W2941209198 @default.
- W3082025683 cites W2947066650 @default.
- W3082025683 cites W2959950776 @default.
- W3082025683 cites W2963566954 @default.
- W3082025683 cites W2964758013 @default.
- W3082025683 cites W2970720335 @default.
- W3082025683 cites W2984033187 @default.
- W3082025683 cites W2999446243 @default.
- W3082025683 cites W3007314771 @default.
- W3082025683 cites W3028962016 @default.
- W3082025683 cites W3099527008 @default.
- W3082025683 cites W3102382472 @default.
- W3082025683 doi "https://doi.org/10.1109/jstars.2020.3020839" @default.
- W3082025683 hasPublicationYear "2020" @default.
- W3082025683 type Work @default.
- W3082025683 sameAs 3082025683 @default.
- W3082025683 citedByCount "10" @default.
- W3082025683 countsByYear W30820256832021 @default.
- W3082025683 countsByYear W30820256832022 @default.
- W3082025683 countsByYear W30820256832023 @default.
- W3082025683 crossrefType "journal-article" @default.
- W3082025683 hasAuthorship W3082025683A5023118644 @default.
- W3082025683 hasAuthorship W3082025683A5040099999 @default.
- W3082025683 hasAuthorship W3082025683A5047516173 @default.
- W3082025683 hasAuthorship W3082025683A5069537423 @default.
- W3082025683 hasBestOaLocation W30820256831 @default.
- W3082025683 hasConcept C105795698 @default.
- W3082025683 hasConcept C119857082 @default.
- W3082025683 hasConcept C124101348 @default.
- W3082025683 hasConcept C127413603 @default.
- W3082025683 hasConcept C143724316 @default.
- W3082025683 hasConcept C146978453 @default.
- W3082025683 hasConcept C147176958 @default.
- W3082025683 hasConcept C151406439 @default.
- W3082025683 hasConcept C151730666 @default.
- W3082025683 hasConcept C153294291 @default.
- W3082025683 hasConcept C154945302 @default.
- W3082025683 hasConcept C159877910 @default.
- W3082025683 hasConcept C160633673 @default.
- W3082025683 hasConcept C166957645 @default.
- W3082025683 hasConcept C19269812 @default.
- W3082025683 hasConcept C205649164 @default.
- W3082025683 hasConcept C24338571 @default.
- W3082025683 hasConcept C24552861 @default.
- W3082025683 hasConcept C2777007095 @default.
- W3082025683 hasConcept C2778755073 @default.
- W3082025683 hasConcept C2779343474 @default.
- W3082025683 hasConcept C2780648208 @default.
- W3082025683 hasConcept C33923547 @default.
- W3082025683 hasConcept C41008148 @default.
- W3082025683 hasConcept C4792198 @default.
- W3082025683 hasConcept C58640448 @default.