Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082078888> ?p ?o ?g. }
- W3082078888 endingPage "106681" @default.
- W3082078888 startingPage "106681" @default.
- W3082078888 abstract "Flight schedule design and fleet assignment are the two main elements of the airline scheduling process, which have the highest effect on cost and revenue. Although mixed-integer linear programming models were developed for integrated schedule design and fleet assignment, it has been shown that this approach was not efficient for large-scale models. Therefore, this paper aimed at developing a parallel master–slave Genetic Algorithm (PMS-GA) for solving the integrated flight schedule design and fleet assignment problem with demand recapture, particularly for large-scale problems. The integrated schedule design and fleet assignment problem was solved by the master GA, while the slave GA nested inside the master GA solved passenger flow adjustment problem. Considering the complexities of a large-scale integrated problem, we (1) proposed an innovative approach for creating feasible suboptimal initial population, (2) developed customized genetic operators to improve the performance of the PMS-GA compared to the conventional GAs, and (3) implemented migration and repopulation to prevent premature convergence. PMS-GA was tested on seven models with small-, medium-, and large-scales, and the results were compared with the gold-standard mixed-integer linear programming in terms of cost and runtime. The comparative study showed that the PMS-GA achieved suboptimal solutions with costs only 1.8% to 3.0% different than the optimal solution for medium- and large-scale models. However, these solutions were obtained in significantly shorter runtimes (over 500% to 1000%) compared to the mixed-integer linear programming. Also, the results showed that in contrast to the mixed-integer linear programming approach, runtimes of the proposed PMS-GA are highly predictable as a function of the problem size. Our results showed the importance of PMS-GA for integrated schedule design and fleet assignment, particularly for solving large-scale re-scheduling problems in a short time." @default.
- W3082078888 created "2020-09-08" @default.
- W3082078888 creator A5025904789 @default.
- W3082078888 creator A5043455526 @default.
- W3082078888 creator A5090180688 @default.
- W3082078888 date "2020-11-01" @default.
- W3082078888 modified "2023-09-30" @default.
- W3082078888 title "A heuristic approach for optimal integrated airline schedule design and fleet assignment with demand recapture" @default.
- W3082078888 cites W1536814129 @default.
- W3082078888 cites W173916624 @default.
- W3082078888 cites W1747534434 @default.
- W3082078888 cites W1969777023 @default.
- W3082078888 cites W1970238313 @default.
- W3082078888 cites W1982253018 @default.
- W3082078888 cites W1983518944 @default.
- W3082078888 cites W1987569535 @default.
- W3082078888 cites W1991386249 @default.
- W3082078888 cites W1995643906 @default.
- W3082078888 cites W2003437712 @default.
- W3082078888 cites W2004074846 @default.
- W3082078888 cites W2030735356 @default.
- W3082078888 cites W2036950253 @default.
- W3082078888 cites W2042410362 @default.
- W3082078888 cites W2047080695 @default.
- W3082078888 cites W2051178883 @default.
- W3082078888 cites W2059559546 @default.
- W3082078888 cites W2065213416 @default.
- W3082078888 cites W2066575045 @default.
- W3082078888 cites W2067009688 @default.
- W3082078888 cites W2071516917 @default.
- W3082078888 cites W2076220277 @default.
- W3082078888 cites W2079855108 @default.
- W3082078888 cites W2106564369 @default.
- W3082078888 cites W2115642546 @default.
- W3082078888 cites W2122332349 @default.
- W3082078888 cites W2127678978 @default.
- W3082078888 cites W2128638128 @default.
- W3082078888 cites W2131486698 @default.
- W3082078888 cites W2137163514 @default.
- W3082078888 cites W2146373415 @default.
- W3082078888 cites W2336734863 @default.
- W3082078888 cites W2340634210 @default.
- W3082078888 cites W2513895815 @default.
- W3082078888 cites W2521611070 @default.
- W3082078888 cites W2522220885 @default.
- W3082078888 cites W2604760770 @default.
- W3082078888 cites W2620462515 @default.
- W3082078888 cites W2793819110 @default.
- W3082078888 cites W2794031013 @default.
- W3082078888 cites W2805886844 @default.
- W3082078888 cites W2887439418 @default.
- W3082078888 cites W2892086193 @default.
- W3082078888 cites W2954228073 @default.
- W3082078888 cites W2963500521 @default.
- W3082078888 cites W2972930621 @default.
- W3082078888 cites W3007595808 @default.
- W3082078888 doi "https://doi.org/10.1016/j.asoc.2020.106681" @default.
- W3082078888 hasPublicationYear "2020" @default.
- W3082078888 type Work @default.
- W3082078888 sameAs 3082078888 @default.
- W3082078888 citedByCount "5" @default.
- W3082078888 countsByYear W30820788882022 @default.
- W3082078888 countsByYear W30820788882023 @default.
- W3082078888 crossrefType "journal-article" @default.
- W3082078888 hasAuthorship W3082078888A5025904789 @default.
- W3082078888 hasAuthorship W3082078888A5043455526 @default.
- W3082078888 hasAuthorship W3082078888A5090180688 @default.
- W3082078888 hasConcept C111919701 @default.
- W3082078888 hasConcept C121332964 @default.
- W3082078888 hasConcept C126255220 @default.
- W3082078888 hasConcept C144024400 @default.
- W3082078888 hasConcept C149923435 @default.
- W3082078888 hasConcept C173801870 @default.
- W3082078888 hasConcept C206729178 @default.
- W3082078888 hasConcept C2778755073 @default.
- W3082078888 hasConcept C2908647359 @default.
- W3082078888 hasConcept C33923547 @default.
- W3082078888 hasConcept C41008148 @default.
- W3082078888 hasConcept C41045048 @default.
- W3082078888 hasConcept C56086750 @default.
- W3082078888 hasConcept C62520636 @default.
- W3082078888 hasConcept C68387754 @default.
- W3082078888 hasConcept C8880873 @default.
- W3082078888 hasConceptScore W3082078888C111919701 @default.
- W3082078888 hasConceptScore W3082078888C121332964 @default.
- W3082078888 hasConceptScore W3082078888C126255220 @default.
- W3082078888 hasConceptScore W3082078888C144024400 @default.
- W3082078888 hasConceptScore W3082078888C149923435 @default.
- W3082078888 hasConceptScore W3082078888C173801870 @default.
- W3082078888 hasConceptScore W3082078888C206729178 @default.
- W3082078888 hasConceptScore W3082078888C2778755073 @default.
- W3082078888 hasConceptScore W3082078888C2908647359 @default.
- W3082078888 hasConceptScore W3082078888C33923547 @default.
- W3082078888 hasConceptScore W3082078888C41008148 @default.
- W3082078888 hasConceptScore W3082078888C41045048 @default.
- W3082078888 hasConceptScore W3082078888C56086750 @default.
- W3082078888 hasConceptScore W3082078888C62520636 @default.
- W3082078888 hasConceptScore W3082078888C68387754 @default.