Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082091293> ?p ?o ?g. }
- W3082091293 endingPage "752" @default.
- W3082091293 startingPage "727" @default.
- W3082091293 abstract "This paper aims to analyze the green efficiency performance of the logistics industry in China’s 30 provinces from 2008 to 2017. We first evaluate the green efficiency of the logistics industry through the non-directional distance function method. Then, we use the functional clustering method funHDDC, which is one of the popular machine learning methods, to divide 30 provinces into 4 clusters and analyze the similarities and differences in green efficiency performance patterns among different groups. Further, we explore the driving factors of dynamic changes in green efficiency through the decomposition method. The main conclusions of this paper are as follows: (1) in general, the level of green efficiency is closely related to the geographical location. From the clustering results, we can find that most of the eastern regions belong to the cluster with higher green efficiency, while most of the western regions belong to the cluster with lower green efficiency. However, the green efficiency performance in several regions with high economic levels, such as Beijing and Shanghai, is not satisfactory. (2) Based on the analysis of decomposition results, the innovation effect of China’s logistics industry is the most obvious, but the efficiency change still needs to be improved, and technical leadership should be strengthened. Based on these conclusions, we further propose some policy recommendations for the green development of the logistics industry in China." @default.
- W3082091293 created "2020-09-08" @default.
- W3082091293 creator A5009205636 @default.
- W3082091293 creator A5010069133 @default.
- W3082091293 creator A5046743454 @default.
- W3082091293 creator A5049590622 @default.
- W3082091293 date "2020-08-28" @default.
- W3082091293 modified "2023-10-01" @default.
- W3082091293 title "Green efficiency performance analysis of the logistics industry in China: based on a kind of machine learning methods" @default.
- W3082091293 cites W1532095289 @default.
- W3082091293 cites W1607071244 @default.
- W3082091293 cites W1728272581 @default.
- W3082091293 cites W1967536980 @default.
- W3082091293 cites W1975120776 @default.
- W3082091293 cites W1975299761 @default.
- W3082091293 cites W1977556410 @default.
- W3082091293 cites W1983908352 @default.
- W3082091293 cites W1988997815 @default.
- W3082091293 cites W1990369652 @default.
- W3082091293 cites W2009324775 @default.
- W3082091293 cites W2033395806 @default.
- W3082091293 cites W2035876200 @default.
- W3082091293 cites W2051316737 @default.
- W3082091293 cites W2062095396 @default.
- W3082091293 cites W2073652965 @default.
- W3082091293 cites W2078635353 @default.
- W3082091293 cites W2080371671 @default.
- W3082091293 cites W2095373758 @default.
- W3082091293 cites W2098940796 @default.
- W3082091293 cites W2133097426 @default.
- W3082091293 cites W2146610201 @default.
- W3082091293 cites W2165041950 @default.
- W3082091293 cites W2167125755 @default.
- W3082091293 cites W2324736186 @default.
- W3082091293 cites W2414319546 @default.
- W3082091293 cites W2517349365 @default.
- W3082091293 cites W2591942602 @default.
- W3082091293 cites W2772442140 @default.
- W3082091293 cites W2773373816 @default.
- W3082091293 cites W2800865026 @default.
- W3082091293 cites W2805136878 @default.
- W3082091293 cites W2807296951 @default.
- W3082091293 cites W2884362267 @default.
- W3082091293 cites W2891025424 @default.
- W3082091293 cites W2891218580 @default.
- W3082091293 cites W2894798061 @default.
- W3082091293 cites W2896429187 @default.
- W3082091293 cites W2896660248 @default.
- W3082091293 cites W2898310817 @default.
- W3082091293 cites W2902251612 @default.
- W3082091293 cites W2907137407 @default.
- W3082091293 cites W2911752518 @default.
- W3082091293 cites W2912769511 @default.
- W3082091293 cites W2918502109 @default.
- W3082091293 cites W2921462117 @default.
- W3082091293 cites W2922254780 @default.
- W3082091293 cites W2930200541 @default.
- W3082091293 cites W2944174625 @default.
- W3082091293 cites W2947089384 @default.
- W3082091293 cites W2947648710 @default.
- W3082091293 cites W2948132065 @default.
- W3082091293 cites W2954987801 @default.
- W3082091293 cites W2963368846 @default.
- W3082091293 cites W2964661246 @default.
- W3082091293 cites W2971444586 @default.
- W3082091293 cites W2979715439 @default.
- W3082091293 cites W2981398460 @default.
- W3082091293 cites W2990110686 @default.
- W3082091293 cites W2993018414 @default.
- W3082091293 cites W3000554040 @default.
- W3082091293 cites W3005377050 @default.
- W3082091293 cites W3015050456 @default.
- W3082091293 cites W3015585074 @default.
- W3082091293 cites W3017323086 @default.
- W3082091293 doi "https://doi.org/10.1007/s10479-020-03763-w" @default.
- W3082091293 hasPublicationYear "2020" @default.
- W3082091293 type Work @default.
- W3082091293 sameAs 3082091293 @default.
- W3082091293 citedByCount "15" @default.
- W3082091293 countsByYear W30820912932021 @default.
- W3082091293 countsByYear W30820912932022 @default.
- W3082091293 countsByYear W30820912932023 @default.
- W3082091293 crossrefType "journal-article" @default.
- W3082091293 hasAuthorship W3082091293A5009205636 @default.
- W3082091293 hasAuthorship W3082091293A5010069133 @default.
- W3082091293 hasAuthorship W3082091293A5046743454 @default.
- W3082091293 hasAuthorship W3082091293A5049590622 @default.
- W3082091293 hasBestOaLocation W30820912932 @default.
- W3082091293 hasConcept C124681953 @default.
- W3082091293 hasConcept C134560507 @default.
- W3082091293 hasConcept C14036430 @default.
- W3082091293 hasConcept C144133560 @default.
- W3082091293 hasConcept C154945302 @default.
- W3082091293 hasConcept C162324750 @default.
- W3082091293 hasConcept C164866538 @default.
- W3082091293 hasConcept C166957645 @default.
- W3082091293 hasConcept C18903297 @default.
- W3082091293 hasConcept C191935318 @default.