Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082100028> ?p ?o ?g. }
- W3082100028 endingPage "2860" @default.
- W3082100028 startingPage "2847" @default.
- W3082100028 abstract "Abstract The misalignment of steel strips in relation to the roller table centerline still is an impairment for the rolling mill production lines. Nowadays, the strip position correction remains largely in the purview of human analysis, in which the strip steering is traditionally a semi-manual operation. Automating the alignment process could reduce the maintenance costs, damage to the plant, and prevent material losses. The first step into the automatization is to determine the strip position and its referred error. This study presents a method that employs semantic segmentation based on convolution neural networks to estimate steel strips positioning error from images of the process. Additionally, the system mitigates the influences of mechanical vibration on the images. The system performance was assessed by standard semantic segmentation evaluation metrics and in comparison with the dataset ground truth. The results showed that 97 % of the estimated positioning errors are within a 2-pixel margin. The method demonstrated to be a robust real-time solution as the networks were trained from a set of low-resolution images acquired in a complex environment." @default.
- W3082100028 created "2020-09-08" @default.
- W3082100028 creator A5058800939 @default.
- W3082100028 creator A5061738116 @default.
- W3082100028 creator A5086088055 @default.
- W3082100028 date "2020-09-01" @default.
- W3082100028 modified "2023-10-01" @default.
- W3082100028 title "Automatic monitoring of steel strip positioning error based on semantic segmentation" @default.
- W3082100028 cites W1903029394 @default.
- W3082100028 cites W1972923418 @default.
- W3082100028 cites W1981759979 @default.
- W3082100028 cites W1993572089 @default.
- W3082100028 cites W2019329118 @default.
- W3082100028 cites W2102605133 @default.
- W3082100028 cites W2118386984 @default.
- W3082100028 cites W2150066425 @default.
- W3082100028 cites W2204880408 @default.
- W3082100028 cites W2257483379 @default.
- W3082100028 cites W2340897893 @default.
- W3082100028 cites W234388709 @default.
- W3082100028 cites W2404692435 @default.
- W3082100028 cites W2563705555 @default.
- W3082100028 cites W2577689561 @default.
- W3082100028 cites W2604505099 @default.
- W3082100028 cites W2622316922 @default.
- W3082100028 cites W2734527384 @default.
- W3082100028 cites W2744790985 @default.
- W3082100028 cites W2765854388 @default.
- W3082100028 cites W2767300823 @default.
- W3082100028 cites W2767626580 @default.
- W3082100028 cites W2783834309 @default.
- W3082100028 cites W2790195878 @default.
- W3082100028 cites W2809473392 @default.
- W3082100028 cites W2909240409 @default.
- W3082100028 cites W2914776782 @default.
- W3082100028 cites W2941813310 @default.
- W3082100028 cites W2942322192 @default.
- W3082100028 cites W2947223272 @default.
- W3082100028 cites W2962604097 @default.
- W3082100028 cites W2963881378 @default.
- W3082100028 cites W3005948428 @default.
- W3082100028 cites W3006169930 @default.
- W3082100028 cites W3010749409 @default.
- W3082100028 cites W3011702509 @default.
- W3082100028 cites W3100230575 @default.
- W3082100028 cites W2062738312 @default.
- W3082100028 doi "https://doi.org/10.1007/s00170-020-05859-w" @default.
- W3082100028 hasPublicationYear "2020" @default.
- W3082100028 type Work @default.
- W3082100028 sameAs 3082100028 @default.
- W3082100028 citedByCount "3" @default.
- W3082100028 countsByYear W30821000282021 @default.
- W3082100028 countsByYear W30821000282022 @default.
- W3082100028 countsByYear W30821000282023 @default.
- W3082100028 crossrefType "journal-article" @default.
- W3082100028 hasAuthorship W3082100028A5058800939 @default.
- W3082100028 hasAuthorship W3082100028A5061738116 @default.
- W3082100028 hasAuthorship W3082100028A5086088055 @default.
- W3082100028 hasBestOaLocation W30821000281 @default.
- W3082100028 hasConcept C10138342 @default.
- W3082100028 hasConcept C111919701 @default.
- W3082100028 hasConcept C121332964 @default.
- W3082100028 hasConcept C127413603 @default.
- W3082100028 hasConcept C146849305 @default.
- W3082100028 hasConcept C153180895 @default.
- W3082100028 hasConcept C154945302 @default.
- W3082100028 hasConcept C160633673 @default.
- W3082100028 hasConcept C162324750 @default.
- W3082100028 hasConcept C16345878 @default.
- W3082100028 hasConcept C173064807 @default.
- W3082100028 hasConcept C177264268 @default.
- W3082100028 hasConcept C198082294 @default.
- W3082100028 hasConcept C198394728 @default.
- W3082100028 hasConcept C199360897 @default.
- W3082100028 hasConcept C200925200 @default.
- W3082100028 hasConcept C24890656 @default.
- W3082100028 hasConcept C2524010 @default.
- W3082100028 hasConcept C2780242121 @default.
- W3082100028 hasConcept C31972630 @default.
- W3082100028 hasConcept C33923547 @default.
- W3082100028 hasConcept C41008148 @default.
- W3082100028 hasConcept C45347329 @default.
- W3082100028 hasConcept C50644808 @default.
- W3082100028 hasConcept C78519656 @default.
- W3082100028 hasConcept C81363708 @default.
- W3082100028 hasConcept C89600930 @default.
- W3082100028 hasConcept C98045186 @default.
- W3082100028 hasConceptScore W3082100028C10138342 @default.
- W3082100028 hasConceptScore W3082100028C111919701 @default.
- W3082100028 hasConceptScore W3082100028C121332964 @default.
- W3082100028 hasConceptScore W3082100028C127413603 @default.
- W3082100028 hasConceptScore W3082100028C146849305 @default.
- W3082100028 hasConceptScore W3082100028C153180895 @default.
- W3082100028 hasConceptScore W3082100028C154945302 @default.
- W3082100028 hasConceptScore W3082100028C160633673 @default.
- W3082100028 hasConceptScore W3082100028C162324750 @default.
- W3082100028 hasConceptScore W3082100028C16345878 @default.
- W3082100028 hasConceptScore W3082100028C173064807 @default.