Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082144842> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3082144842 endingPage "214" @default.
- W3082144842 startingPage "187" @default.
- W3082144842 abstract "We study noise sensitivity of properties of the largest components $${({mathcal{C}_j})_{j geqslant 1}}$$ of the random graph $$mathcal{G}(n,p)$$ in its critical window p = (1+λn−1/3)/n. For instance, is the property “ $$|{mathcal{C}_1}|$$ exceeds its median size” noise sensitive? Roberts and Şengül (2018) proved that the answer to this is yes if the noise ε is such that ε ≫ n−1/6, and conjectured the correct threshold is ε ≫ n−1/3. That is, the threshold for sensitivity should coincide with the critical window—as shown for the existence of long cycles by the first author and Steif (2015). We prove that for ε ≫ n−1/3 the pair of vectors $${n^{ - 2/3}}{(|{mathcal{C}_j}|)_{j geqslant 1}}$$ before and after the noise converges in distribution to a pair of i.i.d. random variables, whereas for ε ≪ n−1/3 the ℓ2-distance between the two goes to 0 in probability. This confirms the above conjecture: any Boolean function of the vector of rescaled component sizes is sensitive in the former case and stable in the latter. We also look at the effect of the noise on the metric space $${n^{ - 1/3}}{({mathcal{C}_j})_{j geqslant 1}}$$ . E.g., for ε ≥ n−1/3+o(1), we show that the joint law of the spaces before and after the noise converges to a product measure, implying noise sensitivity of any property seen in the limit, e.g., “the diameter of $${mathcal{C}_1}$$ exceeds its median.”" @default.
- W3082144842 created "2020-09-08" @default.
- W3082144842 creator A5047720470 @default.
- W3082144842 creator A5052520151 @default.
- W3082144842 date "2022-10-04" @default.
- W3082144842 modified "2023-10-09" @default.
- W3082144842 title "Noise sensitivity of critical random graphs" @default.
- W3082144842 cites W1590619386 @default.
- W3082144842 cites W1983610133 @default.
- W3082144842 cites W2012184276 @default.
- W3082144842 cites W2040419749 @default.
- W3082144842 cites W2049529696 @default.
- W3082144842 cites W2056513564 @default.
- W3082144842 cites W2104099158 @default.
- W3082144842 cites W2161066177 @default.
- W3082144842 cites W2949874440 @default.
- W3082144842 cites W2962759144 @default.
- W3082144842 cites W2962953861 @default.
- W3082144842 cites W3100446587 @default.
- W3082144842 cites W3121646137 @default.
- W3082144842 doi "https://doi.org/10.1007/s11856-022-2354-y" @default.
- W3082144842 hasPublicationYear "2022" @default.
- W3082144842 type Work @default.
- W3082144842 sameAs 3082144842 @default.
- W3082144842 citedByCount "0" @default.
- W3082144842 crossrefType "journal-article" @default.
- W3082144842 hasAuthorship W3082144842A5047720470 @default.
- W3082144842 hasAuthorship W3082144842A5052520151 @default.
- W3082144842 hasBestOaLocation W30821448422 @default.
- W3082144842 hasConcept C114614502 @default.
- W3082144842 hasConcept C115961682 @default.
- W3082144842 hasConcept C118615104 @default.
- W3082144842 hasConcept C154945302 @default.
- W3082144842 hasConcept C2780990831 @default.
- W3082144842 hasConcept C33923547 @default.
- W3082144842 hasConcept C41008148 @default.
- W3082144842 hasConcept C99498987 @default.
- W3082144842 hasConceptScore W3082144842C114614502 @default.
- W3082144842 hasConceptScore W3082144842C115961682 @default.
- W3082144842 hasConceptScore W3082144842C118615104 @default.
- W3082144842 hasConceptScore W3082144842C154945302 @default.
- W3082144842 hasConceptScore W3082144842C2780990831 @default.
- W3082144842 hasConceptScore W3082144842C33923547 @default.
- W3082144842 hasConceptScore W3082144842C41008148 @default.
- W3082144842 hasConceptScore W3082144842C99498987 @default.
- W3082144842 hasIssue "1" @default.
- W3082144842 hasLocation W30821448421 @default.
- W3082144842 hasLocation W30821448422 @default.
- W3082144842 hasOpenAccess W3082144842 @default.
- W3082144842 hasPrimaryLocation W30821448421 @default.
- W3082144842 hasRelatedWork W2013467167 @default.
- W3082144842 hasRelatedWork W2029981401 @default.
- W3082144842 hasRelatedWork W2123831997 @default.
- W3082144842 hasRelatedWork W2740334431 @default.
- W3082144842 hasRelatedWork W2963699585 @default.
- W3082144842 hasRelatedWork W3123287700 @default.
- W3082144842 hasRelatedWork W4212808623 @default.
- W3082144842 hasRelatedWork W4293879768 @default.
- W3082144842 hasRelatedWork W4300773042 @default.
- W3082144842 hasRelatedWork W4301344670 @default.
- W3082144842 hasVolume "252" @default.
- W3082144842 isParatext "false" @default.
- W3082144842 isRetracted "false" @default.
- W3082144842 magId "3082144842" @default.
- W3082144842 workType "article" @default.