Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082146935> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3082146935 abstract "The traditional calibration method for charging piles which used for electric vehicles relies on the field inspection of standard devices of metrology agency. However, with the continuous expansion of electric vehicles' scale in the future, the calibration workload of charging piles will become larger and larger, calibration method that relies solely on the standard devices cannot hold so heavy workload. In this paper, we propose a new calibration method, which can reduce the calibration workload of standard devices fundamentally. Firstly, we train a model which called virtual standard device for the metrology standard through machine learning, and when calibrating the charging pile, we just need to input the charging message into the model, and then we can get the calibration result which includes normal pile, abnormal pile and uncertain pile. Once the model training is completed, the entire calibrating process including the collection of message data, the import of data into the model and the calibration result requires no human intervention unless the result is uncertain. Moreover, it is found that the higher the model accuracy is, the smaller the uncertainty interval is and the less the manual calibration work is. The method of simulated calibration plus field calibration proposed in this paper can help reduce the calibration workload fundamentally and greatly reduce the calibrating pressure of metrology agency." @default.
- W3082146935 created "2020-09-08" @default.
- W3082146935 creator A5024210657 @default.
- W3082146935 creator A5031330161 @default.
- W3082146935 creator A5056164185 @default.
- W3082146935 creator A5066336853 @default.
- W3082146935 creator A5066880251 @default.
- W3082146935 date "2020-06-01" @default.
- W3082146935 modified "2023-09-27" @default.
- W3082146935 title "A New Calibration Approach for Charging Facilities for Electric Vehicles via Machine Learning" @default.
- W3082146935 cites W2135797872 @default.
- W3082146935 cites W2595456096 @default.
- W3082146935 cites W2906189698 @default.
- W3082146935 cites W2909207250 @default.
- W3082146935 cites W2910322950 @default.
- W3082146935 cites W2913923423 @default.
- W3082146935 cites W2922181508 @default.
- W3082146935 doi "https://doi.org/10.1109/icaica50127.2020.9182370" @default.
- W3082146935 hasPublicationYear "2020" @default.
- W3082146935 type Work @default.
- W3082146935 sameAs 3082146935 @default.
- W3082146935 citedByCount "1" @default.
- W3082146935 countsByYear W30821469352022 @default.
- W3082146935 crossrefType "proceedings-article" @default.
- W3082146935 hasAuthorship W3082146935A5024210657 @default.
- W3082146935 hasAuthorship W3082146935A5031330161 @default.
- W3082146935 hasAuthorship W3082146935A5056164185 @default.
- W3082146935 hasAuthorship W3082146935A5066336853 @default.
- W3082146935 hasAuthorship W3082146935A5066880251 @default.
- W3082146935 hasConcept C121332964 @default.
- W3082146935 hasConcept C127413603 @default.
- W3082146935 hasConcept C163258240 @default.
- W3082146935 hasConcept C165838908 @default.
- W3082146935 hasConcept C171146098 @default.
- W3082146935 hasConcept C2776422217 @default.
- W3082146935 hasConcept C41008148 @default.
- W3082146935 hasConcept C62520636 @default.
- W3082146935 hasConceptScore W3082146935C121332964 @default.
- W3082146935 hasConceptScore W3082146935C127413603 @default.
- W3082146935 hasConceptScore W3082146935C163258240 @default.
- W3082146935 hasConceptScore W3082146935C165838908 @default.
- W3082146935 hasConceptScore W3082146935C171146098 @default.
- W3082146935 hasConceptScore W3082146935C2776422217 @default.
- W3082146935 hasConceptScore W3082146935C41008148 @default.
- W3082146935 hasConceptScore W3082146935C62520636 @default.
- W3082146935 hasLocation W30821469351 @default.
- W3082146935 hasOpenAccess W3082146935 @default.
- W3082146935 hasPrimaryLocation W30821469351 @default.
- W3082146935 hasRelatedWork W1858778613 @default.
- W3082146935 hasRelatedWork W2166353395 @default.
- W3082146935 hasRelatedWork W2353358762 @default.
- W3082146935 hasRelatedWork W2354381465 @default.
- W3082146935 hasRelatedWork W2356376220 @default.
- W3082146935 hasRelatedWork W2384813969 @default.
- W3082146935 hasRelatedWork W2388777709 @default.
- W3082146935 hasRelatedWork W2394120650 @default.
- W3082146935 hasRelatedWork W277114639 @default.
- W3082146935 hasRelatedWork W4206635065 @default.
- W3082146935 isParatext "false" @default.
- W3082146935 isRetracted "false" @default.
- W3082146935 magId "3082146935" @default.
- W3082146935 workType "article" @default.