Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082147527> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3082147527 abstract "The subject of this paper are partial geometries $pg(s,t,alpha)$ with parameters $s=d(d'-1), t=d'(d-1), alpha=(d-1)(d'-1)$, $d, d' ge 2$. In all known examples, $q=dd'$ is a power of 2 and the partial geometry arises from a maximal arc of degree $d$ or $d'$ in a projective plane of order $q$ via a known construction due to Thas cite{Thas73} and Wallis cite{W}, with a single known exception of a partial geometry $pg(4,6,3)$ found by Mathon cite{Math} that is not associated with a maximal arc in the projective plane of order 8. A parallel class of lines is a set of pairwise disjoint lines that covers the point set. Two parallel classes are called orthogonal if they share exactly one line. An upper bound on the maximum number of pairwise orthogonal parallel classes in a partial geometry $G$ with parameters $pg(d(d'-1),d'(d-1),(d-1)(d'-1))$ is proved, and it is shown that a necessary and sufficient condition for $G$ to arise from a maximal arc of degree $d$ or $d'$ in a projective plane of order $q=dd'$ is that both $G$ and its dual geometry contain sets of pairwise orthogonal parallel classes that meet the upper bound. An alternative construction of Mathon's partial geometry is presented, and the new necessary condition is used to demonstrate why this partial geometry is not associated with any maximal arc in the projective plane of order 8. The partial geometries associated with all known maximal arcs in projective planes of order 16 are classified up to isomorphism, and their parallel classes of lines and the 2-rank of their incidence matrices are computed. Based on these results, some open problems and conjectures are formulated." @default.
- W3082147527 created "2020-09-08" @default.
- W3082147527 creator A5045680113 @default.
- W3082147527 creator A5054244870 @default.
- W3082147527 date "2020-08-30" @default.
- W3082147527 modified "2023-09-28" @default.
- W3082147527 title "On partial geometries arising from maximal arcs" @default.
- W3082147527 cites W1970795652 @default.
- W3082147527 cites W1974291771 @default.
- W3082147527 cites W1986664783 @default.
- W3082147527 cites W1993533315 @default.
- W3082147527 cites W2018348718 @default.
- W3082147527 cites W2023290000 @default.
- W3082147527 cites W2026400210 @default.
- W3082147527 cites W2029376662 @default.
- W3082147527 cites W2043051801 @default.
- W3082147527 cites W2062228483 @default.
- W3082147527 cites W2063944845 @default.
- W3082147527 cites W2080933557 @default.
- W3082147527 cites W2092375161 @default.
- W3082147527 cites W2106257734 @default.
- W3082147527 cites W2115816074 @default.
- W3082147527 cites W2150986096 @default.
- W3082147527 cites W2410475336 @default.
- W3082147527 cites W2739148627 @default.
- W3082147527 cites W2963616925 @default.
- W3082147527 cites W3003975735 @default.
- W3082147527 hasPublicationYear "2020" @default.
- W3082147527 type Work @default.
- W3082147527 sameAs 3082147527 @default.
- W3082147527 citedByCount "0" @default.
- W3082147527 crossrefType "posted-content" @default.
- W3082147527 hasAuthorship W3082147527A5045680113 @default.
- W3082147527 hasAuthorship W3082147527A5054244870 @default.
- W3082147527 hasConcept C10138342 @default.
- W3082147527 hasConcept C114614502 @default.
- W3082147527 hasConcept C117220453 @default.
- W3082147527 hasConcept C118615104 @default.
- W3082147527 hasConcept C121332964 @default.
- W3082147527 hasConcept C162324750 @default.
- W3082147527 hasConcept C17825722 @default.
- W3082147527 hasConcept C182306322 @default.
- W3082147527 hasConcept C185362025 @default.
- W3082147527 hasConcept C24890656 @default.
- W3082147527 hasConcept C2524010 @default.
- W3082147527 hasConcept C2775997480 @default.
- W3082147527 hasConcept C33923547 @default.
- W3082147527 hasConcept C39290043 @default.
- W3082147527 hasConcept C44139724 @default.
- W3082147527 hasConcept C45340560 @default.
- W3082147527 hasConcept C68363185 @default.
- W3082147527 hasConceptScore W3082147527C10138342 @default.
- W3082147527 hasConceptScore W3082147527C114614502 @default.
- W3082147527 hasConceptScore W3082147527C117220453 @default.
- W3082147527 hasConceptScore W3082147527C118615104 @default.
- W3082147527 hasConceptScore W3082147527C121332964 @default.
- W3082147527 hasConceptScore W3082147527C162324750 @default.
- W3082147527 hasConceptScore W3082147527C17825722 @default.
- W3082147527 hasConceptScore W3082147527C182306322 @default.
- W3082147527 hasConceptScore W3082147527C185362025 @default.
- W3082147527 hasConceptScore W3082147527C24890656 @default.
- W3082147527 hasConceptScore W3082147527C2524010 @default.
- W3082147527 hasConceptScore W3082147527C2775997480 @default.
- W3082147527 hasConceptScore W3082147527C33923547 @default.
- W3082147527 hasConceptScore W3082147527C39290043 @default.
- W3082147527 hasConceptScore W3082147527C44139724 @default.
- W3082147527 hasConceptScore W3082147527C45340560 @default.
- W3082147527 hasConceptScore W3082147527C68363185 @default.
- W3082147527 hasLocation W30821475271 @default.
- W3082147527 hasOpenAccess W3082147527 @default.
- W3082147527 hasPrimaryLocation W30821475271 @default.
- W3082147527 hasRelatedWork W13185210 @default.
- W3082147527 hasRelatedWork W1499980887 @default.
- W3082147527 hasRelatedWork W1538029095 @default.
- W3082147527 hasRelatedWork W1570302968 @default.
- W3082147527 hasRelatedWork W1576273872 @default.
- W3082147527 hasRelatedWork W1848887725 @default.
- W3082147527 hasRelatedWork W1991839844 @default.
- W3082147527 hasRelatedWork W2024997279 @default.
- W3082147527 hasRelatedWork W2026400210 @default.
- W3082147527 hasRelatedWork W2078532556 @default.
- W3082147527 hasRelatedWork W2115816074 @default.
- W3082147527 hasRelatedWork W2122427152 @default.
- W3082147527 hasRelatedWork W2324635105 @default.
- W3082147527 hasRelatedWork W2433779043 @default.
- W3082147527 hasRelatedWork W2916311888 @default.
- W3082147527 hasRelatedWork W2980663951 @default.
- W3082147527 hasRelatedWork W3003975735 @default.
- W3082147527 hasRelatedWork W3039857855 @default.
- W3082147527 hasRelatedWork W3167891364 @default.
- W3082147527 hasRelatedWork W2742130705 @default.
- W3082147527 isParatext "false" @default.
- W3082147527 isRetracted "false" @default.
- W3082147527 magId "3082147527" @default.
- W3082147527 workType "article" @default.