Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082147904> ?p ?o ?g. }
- W3082147904 abstract "In the real environment of industrial equipment, the vibration signals of essential components show deviations due to the fault and noise. Notably, the noise in the signal will interfere with the diagnosis process of the signal and reduce the accuracy of fault diagnosis. Based on the above problem, adaptive filtering (AF) is used as an excellent method to attenuate noise without specifying the noise type. However, how to define the most appropriate length and type of morphological filter element is the most inherent problem which needs to be solved first. This paper proposed a cooperative diagnosis method of rolling bearings vibration signal based on improved adaptive filtering and joint distribution adaptation (JDA). First, the kurtosis under different element types and lengths is calculated as an index. The structural element corresponding to maximum kurtosis is selected as the most suitable morphological filter element because the different morphological filter elements reflect the effect of feature extraction. Then, JDA aims to improve both the marginal distribution and the conditional distribution to solve the chaotic distribution of time-domain features under variable working conditions. Finally, the improved least squares support vector machine (LSSVM) verified the effectiveness and improvement of the proposed method under bearing acceleration signal. At the same time, the comparative experiment proved that the proposed method not only directly corrects the most appropriate elements greatly optimizes the feature structure, but also enhances the accuracy of fault diagnosis." @default.
- W3082147904 created "2020-09-08" @default.
- W3082147904 creator A5017662665 @default.
- W3082147904 creator A5041002799 @default.
- W3082147904 creator A5057749252 @default.
- W3082147904 creator A5068967562 @default.
- W3082147904 date "2020-01-01" @default.
- W3082147904 modified "2023-10-02" @default.
- W3082147904 title "A Fault Diagnosis Method Based on Improved Adaptive Filtering and Joint Distribution Adaptation" @default.
- W3082147904 cites W2091445820 @default.
- W3082147904 cites W2096943734 @default.
- W3082147904 cites W2115403315 @default.
- W3082147904 cites W2238665903 @default.
- W3082147904 cites W2537417286 @default.
- W3082147904 cites W2582080508 @default.
- W3082147904 cites W2605346601 @default.
- W3082147904 cites W2605417236 @default.
- W3082147904 cites W2766793945 @default.
- W3082147904 cites W2786192993 @default.
- W3082147904 cites W2798149494 @default.
- W3082147904 cites W2903086182 @default.
- W3082147904 cites W2912412749 @default.
- W3082147904 cites W2912690210 @default.
- W3082147904 cites W2912921415 @default.
- W3082147904 cites W2915423430 @default.
- W3082147904 cites W2940031855 @default.
- W3082147904 cites W2941870486 @default.
- W3082147904 cites W2955061942 @default.
- W3082147904 cites W2959915043 @default.
- W3082147904 cites W2967000986 @default.
- W3082147904 cites W2972173447 @default.
- W3082147904 cites W2980243565 @default.
- W3082147904 cites W2983932299 @default.
- W3082147904 cites W2984201918 @default.
- W3082147904 cites W2994928929 @default.
- W3082147904 cites W2996934208 @default.
- W3082147904 cites W2996937916 @default.
- W3082147904 cites W2997225789 @default.
- W3082147904 cites W2997349123 @default.
- W3082147904 cites W2999247147 @default.
- W3082147904 cites W2999360247 @default.
- W3082147904 cites W3000241683 @default.
- W3082147904 cites W3001172743 @default.
- W3082147904 cites W3003908700 @default.
- W3082147904 cites W3006443189 @default.
- W3082147904 cites W3007074807 @default.
- W3082147904 cites W3011262627 @default.
- W3082147904 cites W3012370273 @default.
- W3082147904 cites W3016182408 @default.
- W3082147904 doi "https://doi.org/10.1109/access.2020.3020906" @default.
- W3082147904 hasPublicationYear "2020" @default.
- W3082147904 type Work @default.
- W3082147904 sameAs 3082147904 @default.
- W3082147904 citedByCount "13" @default.
- W3082147904 countsByYear W30821479042020 @default.
- W3082147904 countsByYear W30821479042021 @default.
- W3082147904 countsByYear W30821479042022 @default.
- W3082147904 countsByYear W30821479042023 @default.
- W3082147904 crossrefType "journal-article" @default.
- W3082147904 hasAuthorship W3082147904A5017662665 @default.
- W3082147904 hasAuthorship W3082147904A5041002799 @default.
- W3082147904 hasAuthorship W3082147904A5057749252 @default.
- W3082147904 hasAuthorship W3082147904A5068967562 @default.
- W3082147904 hasBestOaLocation W30821479041 @default.
- W3082147904 hasConcept C105795698 @default.
- W3082147904 hasConcept C110121322 @default.
- W3082147904 hasConcept C11413529 @default.
- W3082147904 hasConcept C120665830 @default.
- W3082147904 hasConcept C121332964 @default.
- W3082147904 hasConcept C127313418 @default.
- W3082147904 hasConcept C127413603 @default.
- W3082147904 hasConcept C134306372 @default.
- W3082147904 hasConcept C139807058 @default.
- W3082147904 hasConcept C153180895 @default.
- W3082147904 hasConcept C154945302 @default.
- W3082147904 hasConcept C165205528 @default.
- W3082147904 hasConcept C170154142 @default.
- W3082147904 hasConcept C175551986 @default.
- W3082147904 hasConcept C18555067 @default.
- W3082147904 hasConcept C18653775 @default.
- W3082147904 hasConcept C33923547 @default.
- W3082147904 hasConcept C41008148 @default.
- W3082147904 hasConceptScore W3082147904C105795698 @default.
- W3082147904 hasConceptScore W3082147904C110121322 @default.
- W3082147904 hasConceptScore W3082147904C11413529 @default.
- W3082147904 hasConceptScore W3082147904C120665830 @default.
- W3082147904 hasConceptScore W3082147904C121332964 @default.
- W3082147904 hasConceptScore W3082147904C127313418 @default.
- W3082147904 hasConceptScore W3082147904C127413603 @default.
- W3082147904 hasConceptScore W3082147904C134306372 @default.
- W3082147904 hasConceptScore W3082147904C139807058 @default.
- W3082147904 hasConceptScore W3082147904C153180895 @default.
- W3082147904 hasConceptScore W3082147904C154945302 @default.
- W3082147904 hasConceptScore W3082147904C165205528 @default.
- W3082147904 hasConceptScore W3082147904C170154142 @default.
- W3082147904 hasConceptScore W3082147904C175551986 @default.
- W3082147904 hasConceptScore W3082147904C18555067 @default.
- W3082147904 hasConceptScore W3082147904C18653775 @default.
- W3082147904 hasConceptScore W3082147904C33923547 @default.
- W3082147904 hasConceptScore W3082147904C41008148 @default.