Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082149023> ?p ?o ?g. }
- W3082149023 endingPage "863" @default.
- W3082149023 startingPage "850" @default.
- W3082149023 abstract "Historically, chimpanzees were used for experimental genetic crosses between cloned Plasmodium falciparum parasites and have played a key role in determining genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. The human hepatocyte chimeric FRG huHep mouse has replaced the chimpanzee and allows for the routine generation of P. falciparum genetic crosses and the recovery of hundreds and potentially thousands of unique recombinant progeny, strengthening the power of genetic linkage mapping. Classical linkage mapping, bulk segregant analysis, CRISPR/Cas9 technology, and high-throughput ’omics techniques using recombinant progeny should allow for unprecedented power and efficiency to carry out a systems genetics approach to expand our understanding of P. falciparum biology. The first experimental crosses carried out with the human malaria parasite Plasmodium falciparum played a key role in determining the genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. These crosses relied on splenectomized chimpanzees to complete the liver stage of the parasite's life cycle and the subsequent transition to asexual blood stage culture followed by cloning of recombinant progeny in vitro. Crosses can now be routinely carried out using human-liver-chimeric mice infused with human erythrocytes to generate hundreds of unique recombinant progeny for genetic linkage mapping, bulk segregant analysis, and high-throughput ’omics readouts. The high number of recombinant progeny should allow for unprecedented power and efficiency in the execution of a systems genetics approach to study P. falciparum biology. The first experimental crosses carried out with the human malaria parasite Plasmodium falciparum played a key role in determining the genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. These crosses relied on splenectomized chimpanzees to complete the liver stage of the parasite's life cycle and the subsequent transition to asexual blood stage culture followed by cloning of recombinant progeny in vitro. Crosses can now be routinely carried out using human-liver-chimeric mice infused with human erythrocytes to generate hundreds of unique recombinant progeny for genetic linkage mapping, bulk segregant analysis, and high-throughput ’omics readouts. The high number of recombinant progeny should allow for unprecedented power and efficiency in the execution of a systems genetics approach to study P. falciparum biology. a linkage mapping approach that compares allele frequencies from different population pools segregated by phenotype. the contribution of a locus to the genetic variance of a given trait. an immunocompromised mouse, engrafted with human hepatocytes, that allows for P. falciparum liver stage development; with a transfusion of human erythrocytes it allows the transition of liver stage to blood stage. the genetic contribution to a phenotype. In the simplest case, a single major gene influences a phenotype. However, more typically, many genes influence a phenotype to varying degrees (each gene has a different effect size on the phenotype) and there are various interactions between these genes and the environment (genotype-by-genotype interactions and/or genotype-by-environment interactions). the broader whole genome context in which the phenotype of interest evolves and persists. The broader genetic context can include secondary (or modulatory) genes along with compensatory genes that play an important role in defining a phenotype. this approach uses a genome-wide set of genetic markers across a set of recombinant progeny and parents to determine if there are genetic loci associated with the phenotype of interest. Loci that are associated with the phenotype emerge as significant peaks in quantitative trait locus mapping. this approach analyzes genome-wide variation in a set of unrelated individuals to search for genotypic variants that are associated with a specific phenotype. a method in numerical ecology to estimate the species diversity in a community. the process by which a newly beneficial mutation arises and becomes fixed in the population. This includes hard selective sweeps (mutations in the chloroquine resistance transporter, PfCRT, conferring chloroquine resistance) and soft selective sweeps (multiple-point mutations in PfK13, conferring artemisinin resistance). a method using short oligonucleotide probes that preferentially bind to a target genome to amplify and sequence genomes of interest from contaminating host tissues. an approach to make sense of complex traits. It examines intermediate molecular phenotypes, such as transcript levels, protein and metabolite abundance, in an attempt to bridge the gap between DNA variation and the traits of interest. Of note, systems genetics methods can be integrated with GWAS to predict causal genes and their functions." @default.
- W3082149023 created "2020-09-08" @default.
- W3082149023 creator A5009984025 @default.
- W3082149023 creator A5033684035 @default.
- W3082149023 creator A5069042958 @default.
- W3082149023 creator A5074778587 @default.
- W3082149023 date "2020-10-01" @default.
- W3082149023 modified "2023-10-02" @default.
- W3082149023 title "Humanized Mice and the Rebirth of Malaria Genetic Crosses" @default.
- W3082149023 cites W1545164994 @default.
- W3082149023 cites W1694215848 @default.
- W3082149023 cites W1825227406 @default.
- W3082149023 cites W1969503178 @default.
- W3082149023 cites W1969571661 @default.
- W3082149023 cites W1972629298 @default.
- W3082149023 cites W1974527939 @default.
- W3082149023 cites W197499770 @default.
- W3082149023 cites W1978114116 @default.
- W3082149023 cites W1978525679 @default.
- W3082149023 cites W1980752431 @default.
- W3082149023 cites W1998770998 @default.
- W3082149023 cites W2001102860 @default.
- W3082149023 cites W2004803790 @default.
- W3082149023 cites W2018732951 @default.
- W3082149023 cites W2019851585 @default.
- W3082149023 cites W2023296392 @default.
- W3082149023 cites W2024791353 @default.
- W3082149023 cites W2025107497 @default.
- W3082149023 cites W2025413782 @default.
- W3082149023 cites W2026791163 @default.
- W3082149023 cites W2027834647 @default.
- W3082149023 cites W2030535796 @default.
- W3082149023 cites W2037542225 @default.
- W3082149023 cites W2038217580 @default.
- W3082149023 cites W2039013541 @default.
- W3082149023 cites W2039735909 @default.
- W3082149023 cites W2041294499 @default.
- W3082149023 cites W2041727540 @default.
- W3082149023 cites W2043823409 @default.
- W3082149023 cites W2045910215 @default.
- W3082149023 cites W2047805473 @default.
- W3082149023 cites W2049016946 @default.
- W3082149023 cites W2050052884 @default.
- W3082149023 cites W2050529580 @default.
- W3082149023 cites W2055730063 @default.
- W3082149023 cites W2056330722 @default.
- W3082149023 cites W2057483300 @default.
- W3082149023 cites W2058326489 @default.
- W3082149023 cites W2058389060 @default.
- W3082149023 cites W2076077595 @default.
- W3082149023 cites W2081729133 @default.
- W3082149023 cites W2086386648 @default.
- W3082149023 cites W2094331166 @default.
- W3082149023 cites W2100465176 @default.
- W3082149023 cites W2102882733 @default.
- W3082149023 cites W2104987179 @default.
- W3082149023 cites W2116601594 @default.
- W3082149023 cites W2124634096 @default.
- W3082149023 cites W2132923209 @default.
- W3082149023 cites W2137764200 @default.
- W3082149023 cites W2141429378 @default.
- W3082149023 cites W2158780951 @default.
- W3082149023 cites W2159420567 @default.
- W3082149023 cites W2162807448 @default.
- W3082149023 cites W2162928486 @default.
- W3082149023 cites W2166369726 @default.
- W3082149023 cites W2309804881 @default.
- W3082149023 cites W2412804509 @default.
- W3082149023 cites W2514285416 @default.
- W3082149023 cites W2536811010 @default.
- W3082149023 cites W2599428094 @default.
- W3082149023 cites W2734447859 @default.
- W3082149023 cites W2767338586 @default.
- W3082149023 cites W2770583059 @default.
- W3082149023 cites W2783284815 @default.
- W3082149023 cites W2800362720 @default.
- W3082149023 cites W2800834635 @default.
- W3082149023 cites W2809036653 @default.
- W3082149023 cites W2901779570 @default.
- W3082149023 cites W2906262892 @default.
- W3082149023 cites W2950857885 @default.
- W3082149023 cites W2951816935 @default.
- W3082149023 cites W2969974048 @default.
- W3082149023 cites W2970652571 @default.
- W3082149023 cites W2973765418 @default.
- W3082149023 cites W2979817677 @default.
- W3082149023 cites W2983933946 @default.
- W3082149023 cites W2991059744 @default.
- W3082149023 cites W3007626262 @default.
- W3082149023 cites W3011679891 @default.
- W3082149023 doi "https://doi.org/10.1016/j.pt.2020.07.009" @default.
- W3082149023 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7530086" @default.
- W3082149023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32891493" @default.
- W3082149023 hasPublicationYear "2020" @default.
- W3082149023 type Work @default.
- W3082149023 sameAs 3082149023 @default.
- W3082149023 citedByCount "21" @default.
- W3082149023 countsByYear W30821490232020 @default.