Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082203854> ?p ?o ?g. }
- W3082203854 endingPage "1547" @default.
- W3082203854 startingPage "1535" @default.
- W3082203854 abstract "BackgroundHippocampal oscillations play a critical role in the ontogeny of allocentric memory in rodents. During the critical period for memory development, hippocampal theta is the driving force behind the temporal coordination of neuronal ensembles underpinning spatial memory. While known that hippocampal oscillations are necessary for normal spatial cognition, whether disrupted hippocampal oscillatory activity during the critical period impairs long-term spatial memory is unknown. Here we investigated whether disruption of normal hippocampal rhythms during the critical period have enduring effects on allocentric memory in rodents.Objective/hypothesisWe hypothesized that disruption of hippocampal oscillations via artificial regulation of the medial septum during the critical period for memory development results in long-standing deficits in spatial cognition.MethodsAfter demonstrating that pan-neuronal medial septum (MS) optogenetic stimulation (465 nm activated) regulated hippocampal oscillations in weanling rats we used a random pattern of stimulation frequencies to disrupt hippocampal theta rhythms for either 1Hr or 5hr a day between postnatal (P) days 21–25. Non-stimulated and yellow light-stimulated (590 nm) rats served as controls. At P50-60 all rats were tested for spatial cognition in the active avoidance task. Rats were then sacrificed, and the MS and hippocampus assessed for cell loss. Power spectrum density of the MS and hippocampus, coherences and voltage correlations between MS and hippocampus were evaluated at baseline for a range of stimulation frequencies from 0.5 to 110 Hz and during disruptive hippocampal stimulation. Unpaired t-tests and ANOVA were used to compare oscillatory parameters, behavior and cell density in all animals.ResultsNon-selective optogenetic stimulation of the MS in P21 rats resulted in precise regulation of hippocampal oscillations with 1:1 entrainment between stimulation frequency (0.5–110 Hz) and hippocampal local field potentials. Across bandwidths MS stimulation increased power, coherence and voltage correlation at all frequencies whereas the disruptive stimulation increased power and reduced coherence and voltage correlations with most statistical measures highly significant (p < 0.001, following correction for false detection). Rats receiving disruptive hippocampal stimulation during the critical period for memory development for either 1Hr or 5hr had marked impairment in spatial learning as measured in active avoidance test compared to non-stimulated or yellow light-control rats (p < 0.001). No cell loss was measured between the blue-stimulated and non-stimulated or yellow light-stimulated controls in either the MS or hippocampus.ConclusionThe results demonstrated that robust regulation of hippocampal oscillations can be achieved with non-selective optogenetic stimulation of the MS in rat pups. A disruptive hippocampal stimulation protocol, which markedly increases power and reduces coherence and voltage correlations between the MS and hippocampus during the critical period of memory development, results in long-standing spatial cognitive deficits. This spatial cognitive impairment is not a result of optogenetic stimulation-induced cell loss." @default.
- W3082203854 created "2020-09-08" @default.
- W3082203854 creator A5013144372 @default.
- W3082203854 creator A5018639411 @default.
- W3082203854 creator A5053545301 @default.
- W3082203854 creator A5061193174 @default.
- W3082203854 creator A5071440117 @default.
- W3082203854 date "2020-11-01" @default.
- W3082203854 modified "2023-10-15" @default.
- W3082203854 title "Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition" @default.
- W3082203854 cites W1501304874 @default.
- W3082203854 cites W1571050529 @default.
- W3082203854 cites W1602228332 @default.
- W3082203854 cites W1627505132 @default.
- W3082203854 cites W1756907294 @default.
- W3082203854 cites W1885965339 @default.
- W3082203854 cites W1930583333 @default.
- W3082203854 cites W1968023011 @default.
- W3082203854 cites W1970034059 @default.
- W3082203854 cites W1970242204 @default.
- W3082203854 cites W1975778127 @default.
- W3082203854 cites W1984821424 @default.
- W3082203854 cites W1994823121 @default.
- W3082203854 cites W1994839334 @default.
- W3082203854 cites W1999127002 @default.
- W3082203854 cites W2000775105 @default.
- W3082203854 cites W2008936540 @default.
- W3082203854 cites W2009397486 @default.
- W3082203854 cites W2009873588 @default.
- W3082203854 cites W2014792483 @default.
- W3082203854 cites W2016943722 @default.
- W3082203854 cites W2019035443 @default.
- W3082203854 cites W2022864922 @default.
- W3082203854 cites W2024187681 @default.
- W3082203854 cites W2025215158 @default.
- W3082203854 cites W2029113104 @default.
- W3082203854 cites W2031809806 @default.
- W3082203854 cites W2034224142 @default.
- W3082203854 cites W2035557045 @default.
- W3082203854 cites W2036182539 @default.
- W3082203854 cites W2041099773 @default.
- W3082203854 cites W2045683730 @default.
- W3082203854 cites W2046923377 @default.
- W3082203854 cites W2046964936 @default.
- W3082203854 cites W2049948139 @default.
- W3082203854 cites W2054278414 @default.
- W3082203854 cites W2057398613 @default.
- W3082203854 cites W2065291833 @default.
- W3082203854 cites W2071830095 @default.
- W3082203854 cites W2073461351 @default.
- W3082203854 cites W2075063416 @default.
- W3082203854 cites W2084694708 @default.
- W3082203854 cites W2088382964 @default.
- W3082203854 cites W2100058016 @default.
- W3082203854 cites W2100771482 @default.
- W3082203854 cites W2108404652 @default.
- W3082203854 cites W2119565218 @default.
- W3082203854 cites W2121935681 @default.
- W3082203854 cites W2130764656 @default.
- W3082203854 cites W2137516955 @default.
- W3082203854 cites W2138596583 @default.
- W3082203854 cites W2139259876 @default.
- W3082203854 cites W2145935221 @default.
- W3082203854 cites W2149430136 @default.
- W3082203854 cites W2152372327 @default.
- W3082203854 cites W2158255900 @default.
- W3082203854 cites W2158788688 @default.
- W3082203854 cites W2159392694 @default.
- W3082203854 cites W2170430044 @default.
- W3082203854 cites W2334824083 @default.
- W3082203854 cites W2396921559 @default.
- W3082203854 cites W2402111156 @default.
- W3082203854 cites W2413351379 @default.
- W3082203854 cites W2491977173 @default.
- W3082203854 cites W2516957959 @default.
- W3082203854 cites W2531890566 @default.
- W3082203854 cites W2561967149 @default.
- W3082203854 cites W2563395744 @default.
- W3082203854 cites W2583415732 @default.
- W3082203854 cites W2591783545 @default.
- W3082203854 cites W25919448 @default.
- W3082203854 cites W2593308454 @default.
- W3082203854 cites W2767130376 @default.
- W3082203854 cites W2795830621 @default.
- W3082203854 cites W2900796884 @default.
- W3082203854 cites W2942694027 @default.
- W3082203854 cites W2949647035 @default.
- W3082203854 cites W2951841918 @default.
- W3082203854 cites W3007429586 @default.
- W3082203854 cites W3043857630 @default.
- W3082203854 cites W4244880723 @default.
- W3082203854 cites W4245490564 @default.
- W3082203854 doi "https://doi.org/10.1016/j.brs.2020.08.011" @default.
- W3082203854 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7953993" @default.
- W3082203854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32871261" @default.
- W3082203854 hasPublicationYear "2020" @default.
- W3082203854 type Work @default.
- W3082203854 sameAs 3082203854 @default.