Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082215776> ?p ?o ?g. }
- W3082215776 endingPage "545" @default.
- W3082215776 startingPage "523" @default.
- W3082215776 abstract "We analyze the role of macroeconomic uncertainty in predicting synchronization in housing price movements across all the United States (US) states plus District of Columbia (DC). We first use a Bayesian dynamic factor model to decompose the house price movements into a national, four regional (Northeast, South, Midwest, and West), and state-specific factors. We then study the ability of macroeconomic uncertainty in forecasting the comovements in housing prices, by controlling for a wide-array of predictors, such as factors derived from a large macroeconomic dataset, oil shocks, and financial market-related uncertainties. To accommodate for multiple predictors and nonlinearities, we take a machine learning approach of random forests. Our results provide strong evidence of forecastability of the national house price factor based on the information content of macroeconomic uncertainties over and above the other predictors. This result also carries over, albeit by a varying degree, to the factors associated with the four census regions, and the overall house price growth of the US economy. Moreover, macroeconomic uncertainty is found to have predictive content for (stochastic) volatility of the national factor and aggregate US house price. Our results have important implications for policymakers and investors." @default.
- W3082215776 created "2020-09-08" @default.
- W3082215776 creator A5015669404 @default.
- W3082215776 creator A5019539580 @default.
- W3082215776 creator A5044142750 @default.
- W3082215776 creator A5049751786 @default.
- W3082215776 date "2021-01-12" @default.
- W3082215776 modified "2023-10-18" @default.
- W3082215776 title "Machine Learning Predictions of Housing Market Synchronization across US States: The Role of Uncertainty" @default.
- W3082215776 cites W1499590837 @default.
- W3082215776 cites W1913814500 @default.
- W3082215776 cites W1942773009 @default.
- W3082215776 cites W1973809982 @default.
- W3082215776 cites W1994546864 @default.
- W3082215776 cites W2036417259 @default.
- W3082215776 cites W2036539952 @default.
- W3082215776 cites W2052224202 @default.
- W3082215776 cites W2053433124 @default.
- W3082215776 cites W2057496756 @default.
- W3082215776 cites W2070281840 @default.
- W3082215776 cites W2079672223 @default.
- W3082215776 cites W2134243766 @default.
- W3082215776 cites W2135613228 @default.
- W3082215776 cites W2153244073 @default.
- W3082215776 cites W2153411685 @default.
- W3082215776 cites W2235200468 @default.
- W3082215776 cites W2257096476 @default.
- W3082215776 cites W2274447940 @default.
- W3082215776 cites W2377315420 @default.
- W3082215776 cites W2559652340 @default.
- W3082215776 cites W2563805277 @default.
- W3082215776 cites W2572251609 @default.
- W3082215776 cites W2656421115 @default.
- W3082215776 cites W2738641963 @default.
- W3082215776 cites W2755883654 @default.
- W3082215776 cites W2761856239 @default.
- W3082215776 cites W2780094620 @default.
- W3082215776 cites W2784521161 @default.
- W3082215776 cites W2787894218 @default.
- W3082215776 cites W2789466276 @default.
- W3082215776 cites W2799977162 @default.
- W3082215776 cites W2901726303 @default.
- W3082215776 cites W2911964244 @default.
- W3082215776 cites W2914674960 @default.
- W3082215776 cites W2946525056 @default.
- W3082215776 cites W2985023918 @default.
- W3082215776 cites W3004332302 @default.
- W3082215776 cites W3006090709 @default.
- W3082215776 cites W3012732886 @default.
- W3082215776 cites W3023877248 @default.
- W3082215776 cites W3121346496 @default.
- W3082215776 cites W3122752520 @default.
- W3082215776 cites W3123225216 @default.
- W3082215776 cites W3123291496 @default.
- W3082215776 cites W3123313701 @default.
- W3082215776 cites W3123602744 @default.
- W3082215776 cites W3123893382 @default.
- W3082215776 cites W3124282140 @default.
- W3082215776 cites W3124295050 @default.
- W3082215776 cites W3124505001 @default.
- W3082215776 cites W3124690764 @default.
- W3082215776 cites W3124748372 @default.
- W3082215776 cites W3125016272 @default.
- W3082215776 cites W3125199452 @default.
- W3082215776 cites W3125345794 @default.
- W3082215776 cites W3181876499 @default.
- W3082215776 cites W3201138845 @default.
- W3082215776 cites W4236290419 @default.
- W3082215776 cites W4236895557 @default.
- W3082215776 cites W46292476 @default.
- W3082215776 cites W68214482 @default.
- W3082215776 doi "https://doi.org/10.1007/s11146-020-09813-1" @default.
- W3082215776 hasPublicationYear "2021" @default.
- W3082215776 type Work @default.
- W3082215776 sameAs 3082215776 @default.
- W3082215776 citedByCount "10" @default.
- W3082215776 countsByYear W30822157762021 @default.
- W3082215776 countsByYear W30822157762022 @default.
- W3082215776 countsByYear W30822157762023 @default.
- W3082215776 crossrefType "journal-article" @default.
- W3082215776 hasAuthorship W3082215776A5015669404 @default.
- W3082215776 hasAuthorship W3082215776A5019539580 @default.
- W3082215776 hasAuthorship W3082215776A5044142750 @default.
- W3082215776 hasAuthorship W3082215776A5049751786 @default.
- W3082215776 hasBestOaLocation W30822157762 @default.
- W3082215776 hasConcept C10138342 @default.
- W3082215776 hasConcept C107673813 @default.
- W3082215776 hasConcept C149782125 @default.
- W3082215776 hasConcept C154945302 @default.
- W3082215776 hasConcept C155702961 @default.
- W3082215776 hasConcept C160234255 @default.
- W3082215776 hasConcept C162324750 @default.
- W3082215776 hasConcept C19244329 @default.
- W3082215776 hasConcept C41008148 @default.
- W3082215776 hasConcept C91602232 @default.
- W3082215776 hasConceptScore W3082215776C10138342 @default.
- W3082215776 hasConceptScore W3082215776C107673813 @default.
- W3082215776 hasConceptScore W3082215776C149782125 @default.