Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082255587> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3082255587 endingPage "101137" @default.
- W3082255587 startingPage "101137" @default.
- W3082255587 abstract "Abstract The technological development, market expansion and increased population will lead the increased use of electronic equipment and production of e-waste worldwide. Disposal of electronic equipment is a challenging problem across the globe. Improper way of electronic waste disposal leads human health risk and environmental pollution. The report shows that 50,000 million tons of e-waste generated across the globe. Electronic waste includes CRT (Cathode Ray Tube), PCB (Printed Circuit Board), unused Television (TV), computers and mobile phones. In this paper we focus on recycling of unused mobile phones. The main objective of this research is introducing automation in metal purification measurement and improvement process using machine learning. The mobile phones contain different toxic metals such as cadmium, beryllium, lead and arsenic. Improper ways of unused mobile phone disposal contaminate water, air and soil. This research work has two parts. First part uses MEPH (Magnetic separation, Eddy current, Pyrometallurgical and Hydrometallurgical) process for metal separation, metal extraction and purification process. In the second part the purified metal is captured through camera and the captured image is subject to noise removal and given as input to the Convolutional Neural Network (CNN) classifier. The classification process is done in two ways; first one is taking input and classing the output. Second one is find the percentage of similarity to the particular class. We used the later one for finding the percentage of similarity between recycled metal and the pure metal. Suppose similarity is less than 90%, the purification process will be improved to enhance purity. In Machine learning different methods are available for feature extraction and classification among which we used the CNN. It easily find the spatial and temporal dependencies of input image by applying proper filters and also extracts high level features, dominant features using convolution and max pooling operation. This operation also reduces the computational power needed to process the input. Activation function plays important role in the feature extraction and classification process. In our research we used the ReLU (Rectified Linear Unit) function for validating the features learned from the input image. The most important advantage of using CNN is that it discovers the significant features without the human command. Also we used the image augmentation to increase the input image data set. The accuracy of metal classification measured using confusion matrix. From this research we got the purified metal and it is directly used for other product manufacturing." @default.
- W3082255587 created "2020-09-08" @default.
- W3082255587 creator A5012433208 @default.
- W3082255587 creator A5021921751 @default.
- W3082255587 creator A5022718239 @default.
- W3082255587 creator A5062129489 @default.
- W3082255587 date "2020-11-01" @default.
- W3082255587 modified "2023-09-26" @default.
- W3082255587 title "Accuracy enhancement in mobile phone recycling process using machine learning technique and MEPH process" @default.
- W3082255587 cites W1973265585 @default.
- W3082255587 cites W2009150508 @default.
- W3082255587 cites W2057251875 @default.
- W3082255587 cites W2060392970 @default.
- W3082255587 cites W2063703002 @default.
- W3082255587 cites W2068234144 @default.
- W3082255587 cites W2097776987 @default.
- W3082255587 cites W2119710194 @default.
- W3082255587 cites W2133649198 @default.
- W3082255587 cites W2155726709 @default.
- W3082255587 cites W2411453977 @default.
- W3082255587 cites W2466744610 @default.
- W3082255587 cites W2523100054 @default.
- W3082255587 cites W2554295160 @default.
- W3082255587 cites W2560537203 @default.
- W3082255587 cites W2800547394 @default.
- W3082255587 cites W2914997544 @default.
- W3082255587 cites W2953179625 @default.
- W3082255587 cites W2964340594 @default.
- W3082255587 cites W4232775194 @default.
- W3082255587 doi "https://doi.org/10.1016/j.eti.2020.101137" @default.
- W3082255587 hasPublicationYear "2020" @default.
- W3082255587 type Work @default.
- W3082255587 sameAs 3082255587 @default.
- W3082255587 citedByCount "11" @default.
- W3082255587 countsByYear W30822555872021 @default.
- W3082255587 countsByYear W30822555872022 @default.
- W3082255587 countsByYear W30822555872023 @default.
- W3082255587 crossrefType "journal-article" @default.
- W3082255587 hasAuthorship W3082255587A5012433208 @default.
- W3082255587 hasAuthorship W3082255587A5021921751 @default.
- W3082255587 hasAuthorship W3082255587A5022718239 @default.
- W3082255587 hasAuthorship W3082255587A5062129489 @default.
- W3082255587 hasConcept C111919701 @default.
- W3082255587 hasConcept C127413603 @default.
- W3082255587 hasConcept C138885662 @default.
- W3082255587 hasConcept C21880701 @default.
- W3082255587 hasConcept C2777421447 @default.
- W3082255587 hasConcept C2778707766 @default.
- W3082255587 hasConcept C41008148 @default.
- W3082255587 hasConcept C41895202 @default.
- W3082255587 hasConcept C76155785 @default.
- W3082255587 hasConcept C98045186 @default.
- W3082255587 hasConceptScore W3082255587C111919701 @default.
- W3082255587 hasConceptScore W3082255587C127413603 @default.
- W3082255587 hasConceptScore W3082255587C138885662 @default.
- W3082255587 hasConceptScore W3082255587C21880701 @default.
- W3082255587 hasConceptScore W3082255587C2777421447 @default.
- W3082255587 hasConceptScore W3082255587C2778707766 @default.
- W3082255587 hasConceptScore W3082255587C41008148 @default.
- W3082255587 hasConceptScore W3082255587C41895202 @default.
- W3082255587 hasConceptScore W3082255587C76155785 @default.
- W3082255587 hasConceptScore W3082255587C98045186 @default.
- W3082255587 hasLocation W30822555871 @default.
- W3082255587 hasOpenAccess W3082255587 @default.
- W3082255587 hasPrimaryLocation W30822555871 @default.
- W3082255587 hasRelatedWork W107051557 @default.
- W3082255587 hasRelatedWork W1702661661 @default.
- W3082255587 hasRelatedWork W2140725864 @default.
- W3082255587 hasRelatedWork W2370652759 @default.
- W3082255587 hasRelatedWork W2390120011 @default.
- W3082255587 hasRelatedWork W2499514350 @default.
- W3082255587 hasRelatedWork W3158182003 @default.
- W3082255587 hasRelatedWork W3174822651 @default.
- W3082255587 hasRelatedWork W831794578 @default.
- W3082255587 hasRelatedWork W2137338429 @default.
- W3082255587 hasVolume "20" @default.
- W3082255587 isParatext "false" @default.
- W3082255587 isRetracted "false" @default.
- W3082255587 magId "3082255587" @default.
- W3082255587 workType "article" @default.