Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082265852> ?p ?o ?g. }
- W3082265852 endingPage "118656" @default.
- W3082265852 startingPage "118656" @default.
- W3082265852 abstract "Ozone is a strong oxidant applied in water treatment for disinfection and organic and inorganic pollutants removal. It can be coupled with membrane processes as a pre-treatment or post-treatment as well as in a hybrid configuration. In this study, we investigated the resistance of three commercial polymer nanofiltration membranes (NP10, NF90 and NF270) in contact with ozone (10 ppm for 1 h) at pH 3 and 7 to assess the influence of the ozone to hydroxyl radical concentrations balance. The surface properties of membranes were characterized before and after ozonation by means of various techniques, i.e. Fourier transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR), zeta potential, water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). For all membranes, the impact of ozonation on pure water permeability was greater at pH 7 than pH 3 due to the faster decomposition of ozone at pH 7 leading to the formation of more free radicals. A decrease in the NP10 membrane permeability (up to 25%) was obtained after ozonation. ATR-FTIR, zeta potential and SEM revealed a fairly good resistance of the polyethersulfone (PES) matrix to ozonation (thanks to the protective effect of electron-withdrawing sulfone groups) under the exposure conditions of this study but the polyvinylpyrrolidone (PVP) additive was substantially oxidized. XPS indicated that the degraded PVP was not released from the PES matrix. It was suggested that the decrease in the NP10 membrane permeability might result from a cross-linking process between macroradicals of degraded PVP chains. In contrast to what was observed with the NP10 membrane, the pure water permeability of the thin-film composite polyamide (PA) membranes dramatically increased after ozonation. The fully aromatic NF90 membrane appeared to be even more sensitive to ozone than the semi aromatic NF270. The different resistances of NF90 and NF270 membranes were attributed to the different amine monomers used for the synthesis of their active layer. Indeed, m-phenylenediamine used in interfacial polymerization of the NF90 active layer is an aromatic amine (aromatic rings are sensitive to ozonation) and is less basic than the non-aromatic piperazine used to develop the NF270 membrane (protonation of amines contributes to protect them from electrophilic attacks). For both PA membranes, ATR-FTIR and SEM indicated severely damaged active layers. The very sharp increase in the NF90 and NF270 permeabilities was attributed to the removal of active layer fragments, which was found compatible with both zeta potential and water contact angle measurements." @default.
- W3082265852 created "2020-09-08" @default.
- W3082265852 creator A5025898087 @default.
- W3082265852 creator A5032015279 @default.
- W3082265852 creator A5061216484 @default.
- W3082265852 creator A5074682262 @default.
- W3082265852 creator A5080098512 @default.
- W3082265852 date "2021-01-01" @default.
- W3082265852 modified "2023-10-12" @default.
- W3082265852 title "Ozone compatibility with polymer nanofiltration membranes" @default.
- W3082265852 cites W118417999 @default.
- W3082265852 cites W1795931317 @default.
- W3082265852 cites W1977915313 @default.
- W3082265852 cites W1978088833 @default.
- W3082265852 cites W1979125046 @default.
- W3082265852 cites W1984696430 @default.
- W3082265852 cites W1986945581 @default.
- W3082265852 cites W1989598523 @default.
- W3082265852 cites W1999956016 @default.
- W3082265852 cites W2008153942 @default.
- W3082265852 cites W2011181681 @default.
- W3082265852 cites W2019241569 @default.
- W3082265852 cites W2023240878 @default.
- W3082265852 cites W2023326608 @default.
- W3082265852 cites W2023641373 @default.
- W3082265852 cites W2026555114 @default.
- W3082265852 cites W2030034147 @default.
- W3082265852 cites W2031354845 @default.
- W3082265852 cites W2032522277 @default.
- W3082265852 cites W2041889621 @default.
- W3082265852 cites W2042218207 @default.
- W3082265852 cites W2044527601 @default.
- W3082265852 cites W2048292708 @default.
- W3082265852 cites W2051341807 @default.
- W3082265852 cites W2052728044 @default.
- W3082265852 cites W2060463834 @default.
- W3082265852 cites W2065966847 @default.
- W3082265852 cites W2068314942 @default.
- W3082265852 cites W2070903365 @default.
- W3082265852 cites W2071651272 @default.
- W3082265852 cites W2076074266 @default.
- W3082265852 cites W2077005355 @default.
- W3082265852 cites W2079108395 @default.
- W3082265852 cites W2085888264 @default.
- W3082265852 cites W2089925253 @default.
- W3082265852 cites W2123811175 @default.
- W3082265852 cites W2137806465 @default.
- W3082265852 cites W2140444001 @default.
- W3082265852 cites W2142217807 @default.
- W3082265852 cites W2144113398 @default.
- W3082265852 cites W2145875183 @default.
- W3082265852 cites W2148789011 @default.
- W3082265852 cites W2166379701 @default.
- W3082265852 cites W2171894480 @default.
- W3082265852 cites W2184714934 @default.
- W3082265852 cites W2328787369 @default.
- W3082265852 cites W2525035086 @default.
- W3082265852 cites W2527449289 @default.
- W3082265852 cites W2551458901 @default.
- W3082265852 cites W2583280061 @default.
- W3082265852 cites W2604544949 @default.
- W3082265852 cites W2742417464 @default.
- W3082265852 cites W2744563718 @default.
- W3082265852 cites W2783852324 @default.
- W3082265852 cites W2788877324 @default.
- W3082265852 cites W2789906332 @default.
- W3082265852 cites W2790142372 @default.
- W3082265852 cites W2796906155 @default.
- W3082265852 cites W2800607221 @default.
- W3082265852 cites W2808782150 @default.
- W3082265852 cites W2887605749 @default.
- W3082265852 cites W2906159859 @default.
- W3082265852 cites W2937016166 @default.
- W3082265852 cites W2945450696 @default.
- W3082265852 cites W2965128671 @default.
- W3082265852 cites W2980113969 @default.
- W3082265852 cites W2981475159 @default.
- W3082265852 cites W2981864551 @default.
- W3082265852 cites W359358616 @default.
- W3082265852 doi "https://doi.org/10.1016/j.memsci.2020.118656" @default.
- W3082265852 hasPublicationYear "2021" @default.
- W3082265852 type Work @default.
- W3082265852 sameAs 3082265852 @default.
- W3082265852 citedByCount "16" @default.
- W3082265852 countsByYear W30822658522021 @default.
- W3082265852 countsByYear W30822658522022 @default.
- W3082265852 countsByYear W30822658522023 @default.
- W3082265852 crossrefType "journal-article" @default.
- W3082265852 hasAuthorship W3082265852A5025898087 @default.
- W3082265852 hasAuthorship W3082265852A5032015279 @default.
- W3082265852 hasAuthorship W3082265852A5061216484 @default.
- W3082265852 hasAuthorship W3082265852A5074682262 @default.
- W3082265852 hasAuthorship W3082265852A5080098512 @default.
- W3082265852 hasBestOaLocation W30822658521 @default.
- W3082265852 hasConcept C127413603 @default.
- W3082265852 hasConcept C146763847 @default.
- W3082265852 hasConcept C153642686 @default.
- W3082265852 hasConcept C155672457 @default.