Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082289425> ?p ?o ?g. }
- W3082289425 endingPage "3828" @default.
- W3082289425 startingPage "3828" @default.
- W3082289425 abstract "This paper presents a study of the Ti-6Al-4V alloy milling under different lubrication conditions, using the minimum quantity lubrication approach. The chosen material is widely used in the industry due to its properties, although they present difficulties in terms of their machinability. A minimum quantity lubrication (MQL) prototype valve was built for this purpose, and machining followed a previously defined experimental design with three lubrication strategies. Speed, feed rate, and the depth of cut were considered as independent variables. As design-dependent variables, cutting forces, torque, and roughness were considered. The desirability optimization function was used in order to obtain the best input data indications, in order to minimize cutting and roughness efforts. Supervised artificial neural networks of the multilayer perceptron type were created and tested, and their responses were compared statistically to the results of the factorial design. It was noted that the variables that most influenced the machining-dependent variables were the feed rate and the depth of cut. A lower roughness value was achieved with MQL only with the use of cutting fluid with graphite. Statistical analysis demonstrated that artificial neural network and the experimental design predict similar results." @default.
- W3082289425 created "2020-09-08" @default.
- W3082289425 creator A5046925343 @default.
- W3082289425 creator A5049994670 @default.
- W3082289425 creator A5064969183 @default.
- W3082289425 creator A5068789285 @default.
- W3082289425 creator A5069708890 @default.
- W3082289425 creator A5074931198 @default.
- W3082289425 creator A5079097756 @default.
- W3082289425 date "2020-08-30" @default.
- W3082289425 modified "2023-10-14" @default.
- W3082289425 title "MQL Strategies Applied in Ti-6Al-4V Alloy Milling—Comparative Analysis between Experimental Design and Artificial Neural Networks" @default.
- W3082289425 cites W2058477986 @default.
- W3082289425 cites W2059086422 @default.
- W3082289425 cites W2080879384 @default.
- W3082289425 cites W2134546866 @default.
- W3082289425 cites W2143664202 @default.
- W3082289425 cites W2165820404 @default.
- W3082289425 cites W2170351171 @default.
- W3082289425 cites W2311599690 @default.
- W3082289425 cites W2328666413 @default.
- W3082289425 cites W2339550244 @default.
- W3082289425 cites W2518095893 @default.
- W3082289425 cites W2525951102 @default.
- W3082289425 cites W2553914133 @default.
- W3082289425 cites W2560641751 @default.
- W3082289425 cites W2754692186 @default.
- W3082289425 cites W2782805677 @default.
- W3082289425 cites W2791877453 @default.
- W3082289425 cites W2794268718 @default.
- W3082289425 cites W2809466286 @default.
- W3082289425 cites W2884431689 @default.
- W3082289425 cites W2884834325 @default.
- W3082289425 cites W2895302110 @default.
- W3082289425 cites W2901312569 @default.
- W3082289425 cites W2903997203 @default.
- W3082289425 cites W2913154037 @default.
- W3082289425 cites W2913292433 @default.
- W3082289425 cites W2914096213 @default.
- W3082289425 cites W2914277610 @default.
- W3082289425 cites W2918458428 @default.
- W3082289425 cites W2924170386 @default.
- W3082289425 cites W2944343725 @default.
- W3082289425 cites W2947292937 @default.
- W3082289425 cites W2949096547 @default.
- W3082289425 cites W2955540723 @default.
- W3082289425 cites W2970831834 @default.
- W3082289425 cites W2974199739 @default.
- W3082289425 cites W2987763498 @default.
- W3082289425 cites W2989665715 @default.
- W3082289425 cites W2989779709 @default.
- W3082289425 cites W2990496484 @default.
- W3082289425 cites W2990848616 @default.
- W3082289425 cites W3001159541 @default.
- W3082289425 cites W3010567095 @default.
- W3082289425 cites W3012535800 @default.
- W3082289425 cites W3013381782 @default.
- W3082289425 cites W3018924512 @default.
- W3082289425 cites W4254899345 @default.
- W3082289425 cites W565456890 @default.
- W3082289425 doi "https://doi.org/10.3390/ma13173828" @default.
- W3082289425 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7504553" @default.
- W3082289425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32872596" @default.
- W3082289425 hasPublicationYear "2020" @default.
- W3082289425 type Work @default.
- W3082289425 sameAs 3082289425 @default.
- W3082289425 citedByCount "4" @default.
- W3082289425 countsByYear W30822894252020 @default.
- W3082289425 countsByYear W30822894252021 @default.
- W3082289425 countsByYear W30822894252023 @default.
- W3082289425 crossrefType "journal-article" @default.
- W3082289425 hasAuthorship W3082289425A5046925343 @default.
- W3082289425 hasAuthorship W3082289425A5049994670 @default.
- W3082289425 hasAuthorship W3082289425A5064969183 @default.
- W3082289425 hasAuthorship W3082289425A5068789285 @default.
- W3082289425 hasAuthorship W3082289425A5069708890 @default.
- W3082289425 hasAuthorship W3082289425A5074931198 @default.
- W3082289425 hasAuthorship W3082289425A5079097756 @default.
- W3082289425 hasBestOaLocation W30822894251 @default.
- W3082289425 hasConcept C105795698 @default.
- W3082289425 hasConcept C107365816 @default.
- W3082289425 hasConcept C119857082 @default.
- W3082289425 hasConcept C127413603 @default.
- W3082289425 hasConcept C154945302 @default.
- W3082289425 hasConcept C159985019 @default.
- W3082289425 hasConcept C16469947 @default.
- W3082289425 hasConcept C169222746 @default.
- W3082289425 hasConcept C179717631 @default.
- W3082289425 hasConcept C184608416 @default.
- W3082289425 hasConcept C191897082 @default.
- W3082289425 hasConcept C192562407 @default.
- W3082289425 hasConcept C199639397 @default.
- W3082289425 hasConcept C2775926494 @default.
- W3082289425 hasConcept C2776450708 @default.
- W3082289425 hasConcept C2777731942 @default.
- W3082289425 hasConcept C33923547 @default.
- W3082289425 hasConcept C34559072 @default.
- W3082289425 hasConcept C41008148 @default.