Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082291161> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3082291161 abstract "The explosion of algorithmic trading has been one of the most prominent trends in the finance industry. In this paper, two strategies for algorithmic trading such as Bollinger bands and the simple moving average (SMA) crossover strategy are studied in the fuzzy settings. The commonly used Bollinger bands trading strategy assumes that the difference between an asset's price and its SMA is normally distributed. However, it is shown that a data-driven t distribution is more appropriate to model the difference between an asset's price and its SMA. A novel data-driven fuzzy Bollinger bands strategy is proposed for algo trading. A good strategy should have a good algo return on investment with low algo volatility. Therefore, forecasting algo volatility and identifying an appropriate distribution of algo returns play a crucial role in algo trading. Sharpe Ratio (SR) is a measure of average algo return earned in excess of the risk-free rate per unit of algo volatility. For a class of SMA crossover strategies with varying window sizes, fuzzy estimates of SR are computed based on various risk measures including the data-driven volatility estimate (DDVE). SR fuzzy forecasts are computed using two recently proposed volatility forecasting models such as data-driven exponentially weighted moving average (DD-EWMA) and data-driven neuro volatility models. The main reason of using the fuzzy approach is to provide α-cuts (interval forecasts) of the SR. An empirical application on a set of widely traded technology stocks shows that the proposed models deliver forecasts of SR with small errors." @default.
- W3082291161 created "2020-09-08" @default.
- W3082291161 creator A5013006175 @default.
- W3082291161 creator A5038922150 @default.
- W3082291161 creator A5043885890 @default.
- W3082291161 creator A5070417389 @default.
- W3082291161 date "2020-07-01" @default.
- W3082291161 modified "2023-09-27" @default.
- W3082291161 title "Novel Data-Driven Fuzzy Algorithmic Volatility Forecasting Models with Applications to Algorithmic Trading" @default.
- W3082291161 cites W1977895070 @default.
- W3082291161 cites W1984253589 @default.
- W3082291161 cites W2038865108 @default.
- W3082291161 cites W2418281354 @default.
- W3082291161 cites W2618989172 @default.
- W3082291161 cites W2945232411 @default.
- W3082291161 cites W2957325811 @default.
- W3082291161 cites W2979356072 @default.
- W3082291161 doi "https://doi.org/10.1109/fuzz48607.2020.9177735" @default.
- W3082291161 hasPublicationYear "2020" @default.
- W3082291161 type Work @default.
- W3082291161 sameAs 3082291161 @default.
- W3082291161 citedByCount "14" @default.
- W3082291161 countsByYear W30822911612020 @default.
- W3082291161 countsByYear W30822911612021 @default.
- W3082291161 countsByYear W30822911612022 @default.
- W3082291161 countsByYear W30822911612023 @default.
- W3082291161 crossrefType "proceedings-article" @default.
- W3082291161 hasAuthorship W3082291161A5013006175 @default.
- W3082291161 hasAuthorship W3082291161A5038922150 @default.
- W3082291161 hasAuthorship W3082291161A5043885890 @default.
- W3082291161 hasAuthorship W3082291161A5070417389 @default.
- W3082291161 hasConcept C106159729 @default.
- W3082291161 hasConcept C111919701 @default.
- W3082291161 hasConcept C131562839 @default.
- W3082291161 hasConcept C139938925 @default.
- W3082291161 hasConcept C149782125 @default.
- W3082291161 hasConcept C162324750 @default.
- W3082291161 hasConcept C196985124 @default.
- W3082291161 hasConcept C2780821815 @default.
- W3082291161 hasConcept C41008148 @default.
- W3082291161 hasConcept C74746147 @default.
- W3082291161 hasConcept C91602232 @default.
- W3082291161 hasConcept C98045186 @default.
- W3082291161 hasConceptScore W3082291161C106159729 @default.
- W3082291161 hasConceptScore W3082291161C111919701 @default.
- W3082291161 hasConceptScore W3082291161C131562839 @default.
- W3082291161 hasConceptScore W3082291161C139938925 @default.
- W3082291161 hasConceptScore W3082291161C149782125 @default.
- W3082291161 hasConceptScore W3082291161C162324750 @default.
- W3082291161 hasConceptScore W3082291161C196985124 @default.
- W3082291161 hasConceptScore W3082291161C2780821815 @default.
- W3082291161 hasConceptScore W3082291161C41008148 @default.
- W3082291161 hasConceptScore W3082291161C74746147 @default.
- W3082291161 hasConceptScore W3082291161C91602232 @default.
- W3082291161 hasConceptScore W3082291161C98045186 @default.
- W3082291161 hasLocation W30822911611 @default.
- W3082291161 hasOpenAccess W3082291161 @default.
- W3082291161 hasPrimaryLocation W30822911611 @default.
- W3082291161 hasRelatedWork W1705423208 @default.
- W3082291161 hasRelatedWork W2013463892 @default.
- W3082291161 hasRelatedWork W2031987118 @default.
- W3082291161 hasRelatedWork W2065426017 @default.
- W3082291161 hasRelatedWork W2117379629 @default.
- W3082291161 hasRelatedWork W2149512997 @default.
- W3082291161 hasRelatedWork W2956387224 @default.
- W3082291161 hasRelatedWork W3009015149 @default.
- W3082291161 hasRelatedWork W3121274774 @default.
- W3082291161 hasRelatedWork W4382519304 @default.
- W3082291161 isParatext "false" @default.
- W3082291161 isRetracted "false" @default.
- W3082291161 magId "3082291161" @default.
- W3082291161 workType "article" @default.