Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082382023> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3082382023 abstract "Acute leukemia often comes with life-threatening prognosis outcome and remains a critical clinical issue today. The implementation of measurable residual disease (MRD) using flow cytometry (FC) is highly effective but the interpretation is time-consuming and suffers from physician idiosyncrasy. Recent machine learning algorithms have been proposed to automatically classify acute leukemia samples with and without MRD to address this clinical need. However, most prior works either validate only on a small data cohort or focus on one specific type of leukemia which lacks generalization. In this work, we propose a transfer learning approach in performing automatic MRD classification that takes advantage of a large scale acute myeloid leukemia (AML) database to facilitate better learning on a small cohort of acute lymphoblastic leukemia (ALL). Specifically, we develop a knowledge-reserved distilled AML pre-trained network with ALL complementary learning to enhance the ALL MRD classification. Our framework achieves 84.5% averaged AUC which shows its transferability across acute leukemia, and our further analysis reveals that younger and elder ALL patient samples benefit more from using the pre-trained AML model." @default.
- W3082382023 created "2020-09-08" @default.
- W3082382023 creator A5000467362 @default.
- W3082382023 creator A5001894880 @default.
- W3082382023 creator A5007182076 @default.
- W3082382023 creator A5009680978 @default.
- W3082382023 creator A5081299798 @default.
- W3082382023 creator A5086107623 @default.
- W3082382023 date "2020-07-01" @default.
- W3082382023 modified "2023-09-26" @default.
- W3082382023 title "A Knowledge-Reserved Distillation with Complementary Transfer for Automated FC-based Classification Across Hematological Malignancies" @default.
- W3082382023 cites W1821462560 @default.
- W3082382023 cites W1977380325 @default.
- W3082382023 cites W2197526533 @default.
- W3082382023 cites W2896930435 @default.
- W3082382023 cites W2948957608 @default.
- W3082382023 cites W2960228757 @default.
- W3082382023 cites W2964177223 @default.
- W3082382023 cites W2979521213 @default.
- W3082382023 doi "https://doi.org/10.1109/embc44109.2020.9176546" @default.
- W3082382023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33019220" @default.
- W3082382023 hasPublicationYear "2020" @default.
- W3082382023 type Work @default.
- W3082382023 sameAs 3082382023 @default.
- W3082382023 citedByCount "1" @default.
- W3082382023 countsByYear W30823820232022 @default.
- W3082382023 crossrefType "proceedings-article" @default.
- W3082382023 hasAuthorship W3082382023A5000467362 @default.
- W3082382023 hasAuthorship W3082382023A5001894880 @default.
- W3082382023 hasAuthorship W3082382023A5007182076 @default.
- W3082382023 hasAuthorship W3082382023A5009680978 @default.
- W3082382023 hasAuthorship W3082382023A5081299798 @default.
- W3082382023 hasAuthorship W3082382023A5086107623 @default.
- W3082382023 hasConcept C119857082 @default.
- W3082382023 hasConcept C126322002 @default.
- W3082382023 hasConcept C140331021 @default.
- W3082382023 hasConcept C143998085 @default.
- W3082382023 hasConcept C150899416 @default.
- W3082382023 hasConcept C154945302 @default.
- W3082382023 hasConcept C2776863199 @default.
- W3082382023 hasConcept C2778461978 @default.
- W3082382023 hasConcept C2778729363 @default.
- W3082382023 hasConcept C41008148 @default.
- W3082382023 hasConcept C61272859 @default.
- W3082382023 hasConcept C71924100 @default.
- W3082382023 hasConceptScore W3082382023C119857082 @default.
- W3082382023 hasConceptScore W3082382023C126322002 @default.
- W3082382023 hasConceptScore W3082382023C140331021 @default.
- W3082382023 hasConceptScore W3082382023C143998085 @default.
- W3082382023 hasConceptScore W3082382023C150899416 @default.
- W3082382023 hasConceptScore W3082382023C154945302 @default.
- W3082382023 hasConceptScore W3082382023C2776863199 @default.
- W3082382023 hasConceptScore W3082382023C2778461978 @default.
- W3082382023 hasConceptScore W3082382023C2778729363 @default.
- W3082382023 hasConceptScore W3082382023C41008148 @default.
- W3082382023 hasConceptScore W3082382023C61272859 @default.
- W3082382023 hasConceptScore W3082382023C71924100 @default.
- W3082382023 hasLocation W30823820231 @default.
- W3082382023 hasLocation W30823820232 @default.
- W3082382023 hasOpenAccess W3082382023 @default.
- W3082382023 hasPrimaryLocation W30823820231 @default.
- W3082382023 hasRelatedWork W10980763 @default.
- W3082382023 hasRelatedWork W11023528 @default.
- W3082382023 hasRelatedWork W11297145 @default.
- W3082382023 hasRelatedWork W4081608 @default.
- W3082382023 hasRelatedWork W6229082 @default.
- W3082382023 hasRelatedWork W6310906 @default.
- W3082382023 hasRelatedWork W7465187 @default.
- W3082382023 hasRelatedWork W8248617 @default.
- W3082382023 hasRelatedWork W8444177 @default.
- W3082382023 hasRelatedWork W868042 @default.
- W3082382023 isParatext "false" @default.
- W3082382023 isRetracted "false" @default.
- W3082382023 magId "3082382023" @default.
- W3082382023 workType "article" @default.