Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082383496> ?p ?o ?g. }
- W3082383496 endingPage "107864" @default.
- W3082383496 startingPage "107864" @default.
- W3082383496 abstract "S-wave velocity provides important information for the purpose of seismic reservoir characterization. However, it is not usually acquired in all wells due to the high cost and technical difficulties. Hence, different methods are developed for S-wave velocity prediction from other conventional petrophysical logs, generally using rock physics methods or artificial intelligence algorithms. Both of these methods have their own challenges for predicting S-wave velocity for complex reservoirs, which affects their prediction accuracy and efficiency accordingly. This paper proposes a combination of rock physics and machine learning methods on a carbonate reservoir to predict S-wave velocity. We used the Xu and Payne model and improved the estimation of the S-wave velocity by modifying the Gassmann's fluid substitution model and deriving a simplified form of it with a so-called C-factor exponent. Firstly, an inversion-based strategy is used to calculate this C-factor in a reference well as the training input data. Then, exponential Gaussian process regression is chosen to estimate the C-factor from the measured reservoir properties. The predicted C-factor, furthermore, is used to invert for a pore model, which was also validated with the computed tomography scanning analysis results. Our results confirm that this pore model, along with the computed C-factor, gives a better estimation for S-wave velocity in a blind well where the errors associated with the routine approaches are reduced significantly." @default.
- W3082383496 created "2020-09-08" @default.
- W3082383496 creator A5022207480 @default.
- W3082383496 creator A5044310674 @default.
- W3082383496 creator A5060429078 @default.
- W3082383496 creator A5065359389 @default.
- W3082383496 date "2020-12-01" @default.
- W3082383496 modified "2023-10-11" @default.
- W3082383496 title "Rock physics model-based prediction of shear wave velocity utilizing machine learning technique for a carbonate reservoir, southwest Iran" @default.
- W3082383496 cites W1511087239 @default.
- W3082383496 cites W1968519627 @default.
- W3082383496 cites W1969817117 @default.
- W3082383496 cites W1973978619 @default.
- W3082383496 cites W1984003326 @default.
- W3082383496 cites W1987233112 @default.
- W3082383496 cites W2002934066 @default.
- W3082383496 cites W2006765402 @default.
- W3082383496 cites W2007478263 @default.
- W3082383496 cites W2009157371 @default.
- W3082383496 cites W2022105667 @default.
- W3082383496 cites W2033591656 @default.
- W3082383496 cites W2037415830 @default.
- W3082383496 cites W2047136762 @default.
- W3082383496 cites W2049257176 @default.
- W3082383496 cites W2072165848 @default.
- W3082383496 cites W2083407492 @default.
- W3082383496 cites W2095341915 @default.
- W3082383496 cites W2095720452 @default.
- W3082383496 cites W2108011640 @default.
- W3082383496 cites W2147699377 @default.
- W3082383496 cites W2150446986 @default.
- W3082383496 cites W2153937424 @default.
- W3082383496 cites W2156193302 @default.
- W3082383496 cites W2169615413 @default.
- W3082383496 cites W2200229929 @default.
- W3082383496 cites W2568902225 @default.
- W3082383496 cites W2571994419 @default.
- W3082383496 cites W2609460191 @default.
- W3082383496 cites W2767088329 @default.
- W3082383496 cites W2804331681 @default.
- W3082383496 cites W2912610612 @default.
- W3082383496 cites W2965326702 @default.
- W3082383496 cites W2972537159 @default.
- W3082383496 cites W2974287515 @default.
- W3082383496 cites W3009493580 @default.
- W3082383496 doi "https://doi.org/10.1016/j.petrol.2020.107864" @default.
- W3082383496 hasPublicationYear "2020" @default.
- W3082383496 type Work @default.
- W3082383496 sameAs 3082383496 @default.
- W3082383496 citedByCount "18" @default.
- W3082383496 countsByYear W30823834962021 @default.
- W3082383496 countsByYear W30823834962022 @default.
- W3082383496 countsByYear W30823834962023 @default.
- W3082383496 crossrefType "journal-article" @default.
- W3082383496 hasAuthorship W3082383496A5022207480 @default.
- W3082383496 hasAuthorship W3082383496A5044310674 @default.
- W3082383496 hasAuthorship W3082383496A5060429078 @default.
- W3082383496 hasAuthorship W3082383496A5065359389 @default.
- W3082383496 hasConcept C11413529 @default.
- W3082383496 hasConcept C119857082 @default.
- W3082383496 hasConcept C127313418 @default.
- W3082383496 hasConcept C135796866 @default.
- W3082383496 hasConcept C14641988 @default.
- W3082383496 hasConcept C147168706 @default.
- W3082383496 hasConcept C165205528 @default.
- W3082383496 hasConcept C187320778 @default.
- W3082383496 hasConcept C1893757 @default.
- W3082383496 hasConcept C199289684 @default.
- W3082383496 hasConcept C2984988205 @default.
- W3082383496 hasConcept C33923547 @default.
- W3082383496 hasConcept C41008148 @default.
- W3082383496 hasConcept C46293882 @default.
- W3082383496 hasConcept C50644808 @default.
- W3082383496 hasConcept C5900021 @default.
- W3082383496 hasConcept C6648577 @default.
- W3082383496 hasConcept C77928131 @default.
- W3082383496 hasConcept C96035792 @default.
- W3082383496 hasConceptScore W3082383496C11413529 @default.
- W3082383496 hasConceptScore W3082383496C119857082 @default.
- W3082383496 hasConceptScore W3082383496C127313418 @default.
- W3082383496 hasConceptScore W3082383496C135796866 @default.
- W3082383496 hasConceptScore W3082383496C14641988 @default.
- W3082383496 hasConceptScore W3082383496C147168706 @default.
- W3082383496 hasConceptScore W3082383496C165205528 @default.
- W3082383496 hasConceptScore W3082383496C187320778 @default.
- W3082383496 hasConceptScore W3082383496C1893757 @default.
- W3082383496 hasConceptScore W3082383496C199289684 @default.
- W3082383496 hasConceptScore W3082383496C2984988205 @default.
- W3082383496 hasConceptScore W3082383496C33923547 @default.
- W3082383496 hasConceptScore W3082383496C41008148 @default.
- W3082383496 hasConceptScore W3082383496C46293882 @default.
- W3082383496 hasConceptScore W3082383496C50644808 @default.
- W3082383496 hasConceptScore W3082383496C5900021 @default.
- W3082383496 hasConceptScore W3082383496C6648577 @default.
- W3082383496 hasConceptScore W3082383496C77928131 @default.
- W3082383496 hasConceptScore W3082383496C96035792 @default.
- W3082383496 hasFunder F4320314812 @default.
- W3082383496 hasLocation W30823834961 @default.