Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082413800> ?p ?o ?g. }
- W3082413800 abstract "Unsupervised learning methods for feature extraction are becoming more and more popular. We combine the popular contrastive learning method (prototypical contrastive learning) and the classic representation learning method (autoencoder) to design an unsupervised feature learning network for hyperspectral classification. Experiments have proved that our two proposed autoencoder networks have good feature learning capabilities by themselves, and the contrastive learning network we designed can better combine the features of the two to learn more representative features. As a result, our method surpasses other comparison methods in the hyperspectral classification experiments, including some supervised methods. Moreover, our method maintains a fast feature extraction speed than baseline methods. In addition, our method reduces the requirements for huge computing resources, separates feature extraction and contrastive learning, and allows more researchers to conduct research and experiments on unsupervised contrastive learning." @default.
- W3082413800 created "2020-09-08" @default.
- W3082413800 creator A5019793270 @default.
- W3082413800 creator A5054794945 @default.
- W3082413800 creator A5086162739 @default.
- W3082413800 date "2020-09-02" @default.
- W3082413800 modified "2023-09-27" @default.
- W3082413800 title "Unsupervised Feature Learning by Autoencoder and Prototypical Contrastive Learning for Hyperspectral Classification" @default.
- W3082413800 cites W114517082 @default.
- W3082413800 cites W117096852 @default.
- W3082413800 cites W1521436688 @default.
- W3082413800 cites W1522301498 @default.
- W3082413800 cites W1976359033 @default.
- W3082413800 cites W1990895816 @default.
- W3082413800 cites W2089468765 @default.
- W3082413800 cites W2090826137 @default.
- W3082413800 cites W2099471712 @default.
- W3082413800 cites W2103094532 @default.
- W3082413800 cites W2138621090 @default.
- W3082413800 cites W2151599207 @default.
- W3082413800 cites W2179290474 @default.
- W3082413800 cites W2331181944 @default.
- W3082413800 cites W2500751094 @default.
- W3082413800 cites W2602031553 @default.
- W3082413800 cites W2764276316 @default.
- W3082413800 cites W2768537477 @default.
- W3082413800 cites W2777427437 @default.
- W3082413800 cites W2791006446 @default.
- W3082413800 cites W2792332881 @default.
- W3082413800 cites W2798991696 @default.
- W3082413800 cites W2842511635 @default.
- W3082413800 cites W2912089046 @default.
- W3082413800 cites W2914331134 @default.
- W3082413800 cites W2940678725 @default.
- W3082413800 cites W2944653015 @default.
- W3082413800 cites W2949117887 @default.
- W3082413800 cites W2951004968 @default.
- W3082413800 cites W2969273655 @default.
- W3082413800 cites W2970971581 @default.
- W3082413800 cites W2998702515 @default.
- W3082413800 cites W3005680577 @default.
- W3082413800 cites W3011495011 @default.
- W3082413800 cites W3022061250 @default.
- W3082413800 cites W3035524453 @default.
- W3082413800 hasPublicationYear "2020" @default.
- W3082413800 type Work @default.
- W3082413800 sameAs 3082413800 @default.
- W3082413800 citedByCount "3" @default.
- W3082413800 countsByYear W30824138002021 @default.
- W3082413800 crossrefType "posted-content" @default.
- W3082413800 hasAuthorship W3082413800A5019793270 @default.
- W3082413800 hasAuthorship W3082413800A5054794945 @default.
- W3082413800 hasAuthorship W3082413800A5086162739 @default.
- W3082413800 hasConcept C101738243 @default.
- W3082413800 hasConcept C108583219 @default.
- W3082413800 hasConcept C119857082 @default.
- W3082413800 hasConcept C138885662 @default.
- W3082413800 hasConcept C153180895 @default.
- W3082413800 hasConcept C154945302 @default.
- W3082413800 hasConcept C159078339 @default.
- W3082413800 hasConcept C17744445 @default.
- W3082413800 hasConcept C199539241 @default.
- W3082413800 hasConcept C2776359362 @default.
- W3082413800 hasConcept C2776401178 @default.
- W3082413800 hasConcept C41008148 @default.
- W3082413800 hasConcept C41895202 @default.
- W3082413800 hasConcept C52622490 @default.
- W3082413800 hasConcept C59404180 @default.
- W3082413800 hasConcept C8038995 @default.
- W3082413800 hasConcept C94625758 @default.
- W3082413800 hasConceptScore W3082413800C101738243 @default.
- W3082413800 hasConceptScore W3082413800C108583219 @default.
- W3082413800 hasConceptScore W3082413800C119857082 @default.
- W3082413800 hasConceptScore W3082413800C138885662 @default.
- W3082413800 hasConceptScore W3082413800C153180895 @default.
- W3082413800 hasConceptScore W3082413800C154945302 @default.
- W3082413800 hasConceptScore W3082413800C159078339 @default.
- W3082413800 hasConceptScore W3082413800C17744445 @default.
- W3082413800 hasConceptScore W3082413800C199539241 @default.
- W3082413800 hasConceptScore W3082413800C2776359362 @default.
- W3082413800 hasConceptScore W3082413800C2776401178 @default.
- W3082413800 hasConceptScore W3082413800C41008148 @default.
- W3082413800 hasConceptScore W3082413800C41895202 @default.
- W3082413800 hasConceptScore W3082413800C52622490 @default.
- W3082413800 hasConceptScore W3082413800C59404180 @default.
- W3082413800 hasConceptScore W3082413800C8038995 @default.
- W3082413800 hasConceptScore W3082413800C94625758 @default.
- W3082413800 hasLocation W30824138001 @default.
- W3082413800 hasOpenAccess W3082413800 @default.
- W3082413800 hasPrimaryLocation W30824138001 @default.
- W3082413800 hasRelatedWork W102191270 @default.
- W3082413800 hasRelatedWork W1777982905 @default.
- W3082413800 hasRelatedWork W1989780297 @default.
- W3082413800 hasRelatedWork W2133421457 @default.
- W3082413800 hasRelatedWork W2158933803 @default.
- W3082413800 hasRelatedWork W2354193593 @default.
- W3082413800 hasRelatedWork W2539899362 @default.
- W3082413800 hasRelatedWork W2560042709 @default.
- W3082413800 hasRelatedWork W2580909225 @default.
- W3082413800 hasRelatedWork W2581068248 @default.