Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082435012> ?p ?o ?g. }
- W3082435012 endingPage "811" @default.
- W3082435012 startingPage "799" @default.
- W3082435012 abstract "Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited. One reason lies in the considerable workload required to train accurate models, which are normally specific for a given combination of markers, and therefore applicable to a very restricted number of experimental settings. We herein propose Marker Sampling and Excite, a neural network approach with a modality sampling strategy and a novel attention module that together enable (i) flexible training with heterogeneous datasets with combinations of markers and (ii) successful utility of learned models on arbitrary subsets of markers prospectively. We show that our single neural network solution performs comparably to an upper bound scenario where an ensemble of many networks is naively trained for each possible marker combination separately. In addition, we demonstrate the feasibility of this framework in high-throughput biological analysis by revising a recent quantitative characterization of bone marrow vasculature in 3D confocal microscopy datasets and further confirm the validity of our approach on an additional, significantly different dataset of microvessels in fetal liver tissues. Not only can our work substantially ameliorate the use of deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with incomplete data acquisitions and missing modalities." @default.
- W3082435012 created "2020-09-08" @default.
- W3082435012 creator A5016658563 @default.
- W3082435012 creator A5022031011 @default.
- W3082435012 creator A5027657719 @default.
- W3082435012 creator A5036633606 @default.
- W3082435012 creator A5053308385 @default.
- W3082435012 creator A5058825872 @default.
- W3082435012 creator A5060380490 @default.
- W3082435012 date "2021-08-09" @default.
- W3082435012 modified "2023-10-06" @default.
- W3082435012 title "Modality attention and sampling enables deep learning with heterogeneous marker combinations in fluorescence microscopy" @default.
- W3082435012 cites W1605218991 @default.
- W3082435012 cites W1901129140 @default.
- W3082435012 cites W2060930865 @default.
- W3082435012 cites W2193032347 @default.
- W3082435012 cites W2194775991 @default.
- W3082435012 cites W2502805798 @default.
- W3082435012 cites W2592929672 @default.
- W3082435012 cites W2738582428 @default.
- W3082435012 cites W2752782242 @default.
- W3082435012 cites W2753709519 @default.
- W3082435012 cites W2767044624 @default.
- W3082435012 cites W2767482076 @default.
- W3082435012 cites W2770857514 @default.
- W3082435012 cites W2786808285 @default.
- W3082435012 cites W2797749376 @default.
- W3082435012 cites W2801396275 @default.
- W3082435012 cites W2808795969 @default.
- W3082435012 cites W2882978096 @default.
- W3082435012 cites W2888493720 @default.
- W3082435012 cites W2900936384 @default.
- W3082435012 cites W2919115771 @default.
- W3082435012 cites W2939059980 @default.
- W3082435012 cites W2949493305 @default.
- W3082435012 cites W2962678076 @default.
- W3082435012 cites W2962932373 @default.
- W3082435012 cites W2963150697 @default.
- W3082435012 cites W2963495494 @default.
- W3082435012 cites W2964422934 @default.
- W3082435012 cites W2979808779 @default.
- W3082435012 cites W2979849298 @default.
- W3082435012 cites W2980844262 @default.
- W3082435012 cites W3004951630 @default.
- W3082435012 cites W3045574179 @default.
- W3082435012 cites W3084995528 @default.
- W3082435012 cites W3144738859 @default.
- W3082435012 cites W639708223 @default.
- W3082435012 cites W66427752 @default.
- W3082435012 doi "https://doi.org/10.1038/s42256-021-00379-y" @default.
- W3082435012 hasPublicationYear "2021" @default.
- W3082435012 type Work @default.
- W3082435012 sameAs 3082435012 @default.
- W3082435012 citedByCount "12" @default.
- W3082435012 countsByYear W30824350122021 @default.
- W3082435012 countsByYear W30824350122022 @default.
- W3082435012 countsByYear W30824350122023 @default.
- W3082435012 crossrefType "journal-article" @default.
- W3082435012 hasAuthorship W3082435012A5016658563 @default.
- W3082435012 hasAuthorship W3082435012A5022031011 @default.
- W3082435012 hasAuthorship W3082435012A5027657719 @default.
- W3082435012 hasAuthorship W3082435012A5036633606 @default.
- W3082435012 hasAuthorship W3082435012A5053308385 @default.
- W3082435012 hasAuthorship W3082435012A5058825872 @default.
- W3082435012 hasAuthorship W3082435012A5060380490 @default.
- W3082435012 hasBestOaLocation W30824350122 @default.
- W3082435012 hasConcept C106131492 @default.
- W3082435012 hasConcept C108583219 @default.
- W3082435012 hasConcept C111919701 @default.
- W3082435012 hasConcept C119857082 @default.
- W3082435012 hasConcept C121332964 @default.
- W3082435012 hasConcept C140779682 @default.
- W3082435012 hasConcept C142724271 @default.
- W3082435012 hasConcept C147080431 @default.
- W3082435012 hasConcept C153180895 @default.
- W3082435012 hasConcept C154945302 @default.
- W3082435012 hasConcept C169274487 @default.
- W3082435012 hasConcept C2777522853 @default.
- W3082435012 hasConcept C2778476105 @default.
- W3082435012 hasConcept C2780226545 @default.
- W3082435012 hasConcept C31972630 @default.
- W3082435012 hasConcept C41008148 @default.
- W3082435012 hasConcept C50644808 @default.
- W3082435012 hasConcept C62520636 @default.
- W3082435012 hasConcept C71924100 @default.
- W3082435012 hasConcept C91881484 @default.
- W3082435012 hasConceptScore W3082435012C106131492 @default.
- W3082435012 hasConceptScore W3082435012C108583219 @default.
- W3082435012 hasConceptScore W3082435012C111919701 @default.
- W3082435012 hasConceptScore W3082435012C119857082 @default.
- W3082435012 hasConceptScore W3082435012C121332964 @default.
- W3082435012 hasConceptScore W3082435012C140779682 @default.
- W3082435012 hasConceptScore W3082435012C142724271 @default.
- W3082435012 hasConceptScore W3082435012C147080431 @default.
- W3082435012 hasConceptScore W3082435012C153180895 @default.
- W3082435012 hasConceptScore W3082435012C154945302 @default.
- W3082435012 hasConceptScore W3082435012C169274487 @default.
- W3082435012 hasConceptScore W3082435012C2777522853 @default.