Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082510161> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3082510161 abstract "Serous borderline ovarian tumor (SBOT) and high-grade serous ovarian cancer (HGSOC) are two distinct subtypes of epithelial ovarian tumors, with markedly different biologic background, behavior, prognosis, and treatment. However, the histologic diagnosis of serous ovarian tumors can be subjectively variable and labor-intensive as multiple tumor slides/blocks need to be thoroughly examined to search for these features. In this study, we aimed to evaluate technical feasibility of using digital pathological approaches to facilitate objective and scalable diagnosis screening for SBOT and HGSOC. Based on Groovy scripts and QuPath, a novel informatics system was developed to facilitate interactive annotation and imaging data exchange for machine learning purposes. Through this developed system, cellular boundaries were detected and expanded set of cellular features were extracted to represent cell- and tissue-level characteristics. According to our evaluation, cell-level classification was accurately achieved for both tumor and stroma cells with greater than 90% accuracy. Upon further re-examinations, 44.2% of the misclassified cells were due to over-/under-segmentations or low-quality of imaging areas. For a total number of 6,485 imaging patches with sufficient tumor and stroma cells (ten of each at least), we achieved 91-95% accuracy to differentiate HGSOC v. SBOT. When all the patches were considered for a WSI to make consensus prediction, 97% accuracy was achieved for accurately classifying all patients, indicating that cellular features digitally extracted from pathological images can be used for cell classification and SBOT v. HGSOC differentiation. Introducing digital pathology into ovarian cancer research could be beneficial to discover potential clinical implications." @default.
- W3082510161 created "2020-09-08" @default.
- W3082510161 creator A5013038112 @default.
- W3082510161 creator A5015852547 @default.
- W3082510161 creator A5027449919 @default.
- W3082510161 creator A5060666237 @default.
- W3082510161 creator A5075549883 @default.
- W3082510161 creator A5090901690 @default.
- W3082510161 date "2020-08-28" @default.
- W3082510161 modified "2023-10-16" @default.
- W3082510161 title "Digital pathology-based study of cell- and tissue-level morphologic features in serous borderline ovarian tumor and high-grade serous ovarian cancer" @default.
- W3082510161 cites W2003563992 @default.
- W3082510161 cites W2086757750 @default.
- W3082510161 cites W2200290088 @default.
- W3082510161 cites W2417585990 @default.
- W3082510161 cites W2514327561 @default.
- W3082510161 cites W2565033598 @default.
- W3082510161 cites W2790813572 @default.
- W3082510161 cites W2810835704 @default.
- W3082510161 cites W2921675148 @default.
- W3082510161 cites W2974738309 @default.
- W3082510161 cites W2981427923 @default.
- W3082510161 cites W2998794254 @default.
- W3082510161 cites W2999274982 @default.
- W3082510161 cites W3037740841 @default.
- W3082510161 doi "https://doi.org/10.48550/arxiv.2008.12479" @default.
- W3082510161 hasPublicationYear "2020" @default.
- W3082510161 type Work @default.
- W3082510161 sameAs 3082510161 @default.
- W3082510161 citedByCount "1" @default.
- W3082510161 countsByYear W30825101612022 @default.
- W3082510161 crossrefType "posted-content" @default.
- W3082510161 hasAuthorship W3082510161A5013038112 @default.
- W3082510161 hasAuthorship W3082510161A5015852547 @default.
- W3082510161 hasAuthorship W3082510161A5027449919 @default.
- W3082510161 hasAuthorship W3082510161A5060666237 @default.
- W3082510161 hasAuthorship W3082510161A5075549883 @default.
- W3082510161 hasAuthorship W3082510161A5090901690 @default.
- W3082510161 hasBestOaLocation W30825101611 @default.
- W3082510161 hasConcept C121608353 @default.
- W3082510161 hasConcept C126322002 @default.
- W3082510161 hasConcept C142724271 @default.
- W3082510161 hasConcept C150173356 @default.
- W3082510161 hasConcept C204232928 @default.
- W3082510161 hasConcept C2778560582 @default.
- W3082510161 hasConcept C2780084626 @default.
- W3082510161 hasConcept C2780427987 @default.
- W3082510161 hasConcept C52124034 @default.
- W3082510161 hasConcept C71924100 @default.
- W3082510161 hasConceptScore W3082510161C121608353 @default.
- W3082510161 hasConceptScore W3082510161C126322002 @default.
- W3082510161 hasConceptScore W3082510161C142724271 @default.
- W3082510161 hasConceptScore W3082510161C150173356 @default.
- W3082510161 hasConceptScore W3082510161C204232928 @default.
- W3082510161 hasConceptScore W3082510161C2778560582 @default.
- W3082510161 hasConceptScore W3082510161C2780084626 @default.
- W3082510161 hasConceptScore W3082510161C2780427987 @default.
- W3082510161 hasConceptScore W3082510161C52124034 @default.
- W3082510161 hasConceptScore W3082510161C71924100 @default.
- W3082510161 hasLocation W30825101611 @default.
- W3082510161 hasOpenAccess W3082510161 @default.
- W3082510161 hasPrimaryLocation W30825101611 @default.
- W3082510161 hasRelatedWork W1996842439 @default.
- W3082510161 hasRelatedWork W2051213294 @default.
- W3082510161 hasRelatedWork W2128042794 @default.
- W3082510161 hasRelatedWork W2133018756 @default.
- W3082510161 hasRelatedWork W2258508673 @default.
- W3082510161 hasRelatedWork W2765866894 @default.
- W3082510161 hasRelatedWork W2903908908 @default.
- W3082510161 hasRelatedWork W2912410416 @default.
- W3082510161 hasRelatedWork W2913603143 @default.
- W3082510161 hasRelatedWork W37110955 @default.
- W3082510161 isParatext "false" @default.
- W3082510161 isRetracted "false" @default.
- W3082510161 magId "3082510161" @default.
- W3082510161 workType "article" @default.