Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082550982> ?p ?o ?g. }
- W3082550982 endingPage "154" @default.
- W3082550982 startingPage "144" @default.
- W3082550982 abstract "Exploring techniques that breakthrough the unknown space or material species is of considerable significance to military and civilian fields, and it is a challenging task without any prior information. Nowadays, the use of material-specific spectral information to detect unknowns has received increasing interest. However, affected by noise and interference, high-dimensional hyperspectral anomaly detection is difficult to meet the requirements of high detection accuracy and low false alarm rate. Besides, there is a problem of insufficient and unbalanced samples. To address these problems, we propose a novel hyperspectral anomaly detection framework based on spectral mapping and feature selection (SMFS) in an unsupervised manner. The SMFS introduces the essential properties of hyperspectral data into an unsupervised neural network to construct the nonlinear mapping relationship from high-dimensional spectral space to low-dimensional deep feature space. And it searches the optimal feature subset from the candidate feature space for standing out anomalies. Because of the compelling characterization of the encoder, we develop it specifically for spectral signatures to reveal the hidden data. Quantitative and qualitative experiments on real hyperspectral datasets indicate that the proposed method can provide the compact features overcoming the problems of noise, interference, redundancy and time-consuming caused by high-dimensionality and limited samples. And it has advantages over some state-of-the-art competitors concerning detecting anomalies of different scales." @default.
- W3082550982 created "2020-09-08" @default.
- W3082550982 creator A5007285444 @default.
- W3082550982 creator A5024631382 @default.
- W3082550982 creator A5039816737 @default.
- W3082550982 creator A5052163069 @default.
- W3082550982 creator A5062318228 @default.
- W3082550982 creator A5066057809 @default.
- W3082550982 creator A5067798266 @default.
- W3082550982 date "2020-12-01" @default.
- W3082550982 modified "2023-10-15" @default.
- W3082550982 title "Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection" @default.
- W3082550982 cites W1899348529 @default.
- W3082550982 cites W1932531222 @default.
- W3082550982 cites W1969177710 @default.
- W3082550982 cites W1970099214 @default.
- W3082550982 cites W1972578813 @default.
- W3082550982 cites W1974210421 @default.
- W3082550982 cites W1998691552 @default.
- W3082550982 cites W2004491663 @default.
- W3082550982 cites W2024288510 @default.
- W3082550982 cites W2029316659 @default.
- W3082550982 cites W2047870694 @default.
- W3082550982 cites W2053186076 @default.
- W3082550982 cites W2067782748 @default.
- W3082550982 cites W2124267685 @default.
- W3082550982 cites W2125188192 @default.
- W3082550982 cites W2130325614 @default.
- W3082550982 cites W2141624157 @default.
- W3082550982 cites W2142552707 @default.
- W3082550982 cites W2156517622 @default.
- W3082550982 cites W2165379615 @default.
- W3082550982 cites W2288636546 @default.
- W3082550982 cites W2288752886 @default.
- W3082550982 cites W2292987679 @default.
- W3082550982 cites W2343117455 @default.
- W3082550982 cites W2497075055 @default.
- W3082550982 cites W2513880407 @default.
- W3082550982 cites W2533102868 @default.
- W3082550982 cites W2610928256 @default.
- W3082550982 cites W2740976805 @default.
- W3082550982 cites W2767003739 @default.
- W3082550982 cites W2795739134 @default.
- W3082550982 cites W2796629918 @default.
- W3082550982 cites W2807662216 @default.
- W3082550982 cites W2889811736 @default.
- W3082550982 cites W2898121906 @default.
- W3082550982 cites W2901084634 @default.
- W3082550982 cites W2911419410 @default.
- W3082550982 cites W2911876518 @default.
- W3082550982 cites W2914570111 @default.
- W3082550982 cites W2988878652 @default.
- W3082550982 cites W3015560401 @default.
- W3082550982 doi "https://doi.org/10.1016/j.neunet.2020.08.010" @default.
- W3082550982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32889154" @default.
- W3082550982 hasPublicationYear "2020" @default.
- W3082550982 type Work @default.
- W3082550982 sameAs 3082550982 @default.
- W3082550982 citedByCount "13" @default.
- W3082550982 countsByYear W30825509822021 @default.
- W3082550982 countsByYear W30825509822022 @default.
- W3082550982 countsByYear W30825509822023 @default.
- W3082550982 crossrefType "journal-article" @default.
- W3082550982 hasAuthorship W3082550982A5007285444 @default.
- W3082550982 hasAuthorship W3082550982A5024631382 @default.
- W3082550982 hasAuthorship W3082550982A5039816737 @default.
- W3082550982 hasAuthorship W3082550982A5052163069 @default.
- W3082550982 hasAuthorship W3082550982A5062318228 @default.
- W3082550982 hasAuthorship W3082550982A5066057809 @default.
- W3082550982 hasAuthorship W3082550982A5067798266 @default.
- W3082550982 hasConcept C111030470 @default.
- W3082550982 hasConcept C111919701 @default.
- W3082550982 hasConcept C115961682 @default.
- W3082550982 hasConcept C124101348 @default.
- W3082550982 hasConcept C138885662 @default.
- W3082550982 hasConcept C148483581 @default.
- W3082550982 hasConcept C152124472 @default.
- W3082550982 hasConcept C153180895 @default.
- W3082550982 hasConcept C154945302 @default.
- W3082550982 hasConcept C159078339 @default.
- W3082550982 hasConcept C202444582 @default.
- W3082550982 hasConcept C2776401178 @default.
- W3082550982 hasConcept C2778740170 @default.
- W3082550982 hasConcept C33923547 @default.
- W3082550982 hasConcept C41008148 @default.
- W3082550982 hasConcept C41895202 @default.
- W3082550982 hasConcept C52622490 @default.
- W3082550982 hasConcept C70518039 @default.
- W3082550982 hasConcept C739882 @default.
- W3082550982 hasConcept C83665646 @default.
- W3082550982 hasConcept C99498987 @default.
- W3082550982 hasConceptScore W3082550982C111030470 @default.
- W3082550982 hasConceptScore W3082550982C111919701 @default.
- W3082550982 hasConceptScore W3082550982C115961682 @default.
- W3082550982 hasConceptScore W3082550982C124101348 @default.
- W3082550982 hasConceptScore W3082550982C138885662 @default.
- W3082550982 hasConceptScore W3082550982C148483581 @default.
- W3082550982 hasConceptScore W3082550982C152124472 @default.