Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082558787> ?p ?o ?g. }
- W3082558787 endingPage "333" @default.
- W3082558787 startingPage "305" @default.
- W3082558787 abstract "Today, Machine Learning (ML) is apart of our daily life. It has major advancements in its applications and research as well. ML is the study in which a machine is trained with past data and examples and uses algorithms to build the logic. Important ML applicationsare speech recognition, computer vision, bio-surveillance, robot or automation control, empirical science experiments, DNA classification, intrusion detection, astronomical data analysis, information security, transportation, etc. According to a recent survey, computer-generated insurance advice is helpful to customers. Using ML, determination of cover for a certain customer can be predicted. Choice of the mode of transportation can also be benefited from ML. ML predicts the mode of transportation for an individual to make their travel better. Travel modes may include private car, public transport (bus or train), or soft mode (walking or cycling). The very first step in applying ML is to define a problem. This step includes three important processes to be considered, namely, problem identification, the motivation behind problem solving, and the solution itself. This chapter presents the evolution of ML along with the purpose it serves. It also focuses on the ideas of concept learning along with the methods and algorithms therein." @default.
- W3082558787 created "2020-09-08" @default.
- W3082558787 creator A5020748586 @default.
- W3082558787 creator A5022584743 @default.
- W3082558787 creator A5039751267 @default.
- W3082558787 creator A5047343683 @default.
- W3082558787 date "2020-07-15" @default.
- W3082558787 modified "2023-09-27" @default.
- W3082558787 title "Application of Big Data and Machine Learning" @default.
- W3082558787 cites W1533083599 @default.
- W3082558787 cites W1901616594 @default.
- W3082558787 cites W1956718793 @default.
- W3082558787 cites W1965009340 @default.
- W3082558787 cites W1973230979 @default.
- W3082558787 cites W1987301313 @default.
- W3082558787 cites W2002764085 @default.
- W3082558787 cites W2009400256 @default.
- W3082558787 cites W2009671025 @default.
- W3082558787 cites W2047914690 @default.
- W3082558787 cites W2067513146 @default.
- W3082558787 cites W2076684951 @default.
- W3082558787 cites W2105411710 @default.
- W3082558787 cites W2135195074 @default.
- W3082558787 cites W2146199357 @default.
- W3082558787 cites W2150495207 @default.
- W3082558787 cites W2185489349 @default.
- W3082558787 cites W2212867482 @default.
- W3082558787 cites W2219836174 @default.
- W3082558787 cites W2274950530 @default.
- W3082558787 cites W2382937056 @default.
- W3082558787 cites W2523834880 @default.
- W3082558787 cites W2530539999 @default.
- W3082558787 cites W2590019597 @default.
- W3082558787 cites W2603631340 @default.
- W3082558787 cites W2609731728 @default.
- W3082558787 cites W2610289394 @default.
- W3082558787 cites W2732692660 @default.
- W3082558787 cites W2734005014 @default.
- W3082558787 cites W2784230356 @default.
- W3082558787 cites W2790097716 @default.
- W3082558787 cites W2792316459 @default.
- W3082558787 cites W2796632413 @default.
- W3082558787 cites W2802253593 @default.
- W3082558787 cites W2802953454 @default.
- W3082558787 cites W2806255535 @default.
- W3082558787 cites W281062073 @default.
- W3082558787 cites W2885770726 @default.
- W3082558787 cites W2890637277 @default.
- W3082558787 cites W2891534395 @default.
- W3082558787 cites W2911311508 @default.
- W3082558787 cites W2917871264 @default.
- W3082558787 cites W2922919311 @default.
- W3082558787 cites W2945257394 @default.
- W3082558787 cites W2953605441 @default.
- W3082558787 cites W2958919462 @default.
- W3082558787 cites W2960280836 @default.
- W3082558787 cites W2963375395 @default.
- W3082558787 cites W2963390885 @default.
- W3082558787 cites W2964753790 @default.
- W3082558787 cites W2966622305 @default.
- W3082558787 cites W2967553555 @default.
- W3082558787 cites W2968459389 @default.
- W3082558787 cites W2973684959 @default.
- W3082558787 cites W2993894543 @default.
- W3082558787 cites W3098310942 @default.
- W3082558787 cites W3101164173 @default.
- W3082558787 cites W4296886862 @default.
- W3082558787 doi "https://doi.org/10.1002/9781119654834.ch12" @default.
- W3082558787 hasPublicationYear "2020" @default.
- W3082558787 type Work @default.
- W3082558787 sameAs 3082558787 @default.
- W3082558787 citedByCount "2" @default.
- W3082558787 countsByYear W30825587872022 @default.
- W3082558787 crossrefType "other" @default.
- W3082558787 hasAuthorship W3082558787A5020748586 @default.
- W3082558787 hasAuthorship W3082558787A5022584743 @default.
- W3082558787 hasAuthorship W3082558787A5039751267 @default.
- W3082558787 hasAuthorship W3082558787A5047343683 @default.
- W3082558787 hasConcept C107457646 @default.
- W3082558787 hasConcept C115901376 @default.
- W3082558787 hasConcept C116834253 @default.
- W3082558787 hasConcept C119857082 @default.
- W3082558787 hasConcept C127413603 @default.
- W3082558787 hasConcept C154945302 @default.
- W3082558787 hasConcept C22212356 @default.
- W3082558787 hasConcept C2775924081 @default.
- W3082558787 hasConcept C2780428219 @default.
- W3082558787 hasConcept C41008148 @default.
- W3082558787 hasConcept C48677424 @default.
- W3082558787 hasConcept C539828613 @default.
- W3082558787 hasConcept C59822182 @default.
- W3082558787 hasConcept C78519656 @default.
- W3082558787 hasConcept C86803240 @default.
- W3082558787 hasConcept C90509273 @default.
- W3082558787 hasConceptScore W3082558787C107457646 @default.
- W3082558787 hasConceptScore W3082558787C115901376 @default.
- W3082558787 hasConceptScore W3082558787C116834253 @default.
- W3082558787 hasConceptScore W3082558787C119857082 @default.