Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082568082> ?p ?o ?g. }
- W3082568082 endingPage "115961" @default.
- W3082568082 startingPage "115961" @default.
- W3082568082 abstract "In the present study, fluid flow and heat transfer characteristics of a heat sink partially fitted with multilayered porous medium are analyzed. The multilayered copper foam contains three different layers placed at the bottom wall of the heat sink exposing to a uniform heat flux. The whole occupied volume of the porous region is 60% of the channel. The main objective of the current study is to reveal a layout for the porous medium with optimum thickness for each layer in two proposed models to maximize the heat transfer and minimize the pressure drop. In the constant particle diameter model, all three layers have an equal particle diameter of 1.5 cm with three porosities of 0.95, 0.85 and 0.75 from bottom to top. In the constant porosity model, all three layers have an equal porosity of 0.95 with three particle diameters of 0.5, 1 and 1.5 cm from bottom to top. To trade-off between the desirable (heat transfer) and undesirable (pressure drop) outcomes, the dimensionless number of performance evaluation criterion (PEC) is determined. Darcy–Brinkman–Forchheimer and local thermal non-equilibrium (LTNE) models are applied to solve the governing equations in the porous region. The CFD numerical simulations are conducted to analyze the effect of each layer thickness of the multilayered porous medium in the two proposed models on the thermohydraulic parameters such as friction coefficient, Nusselt number and PEC number. At the optimum layouts of the porous medium, water-graphene nanoplatelet/platinum hybrid nanofluid is applied to enhance the thermal performance of the heat sink. The obtained results reveal that the highest PEC number is achieved in the constant porosity model equal to 1.17 at the case in which the lower, middle and upper metal foam layer thicknesses are 0.6, 1 and 0.2 cm, respectively, resulting in 145% heat transfer enhancement. In constant particle diameter model, the highest PEC number equals to 1.26 at the case in which the lower, middle and upper metal foam layer thicknesses are 1, 0.6 and 0.2 cm, respectively, resulting in 191% heat transfer augmentation compared with the plain channel. Further increase in PEC number is observed by adding nanoparticles to the base fluid for nanofluid volume concentration of 0.1% in constant porosity and particle diameter models which are equal to 1.22 and 1.31, respectively." @default.
- W3082568082 created "2020-09-08" @default.
- W3082568082 creator A5014794860 @default.
- W3082568082 creator A5025367879 @default.
- W3082568082 creator A5063133318 @default.
- W3082568082 creator A5082489604 @default.
- W3082568082 creator A5088548272 @default.
- W3082568082 creator A5090466238 @default.
- W3082568082 date "2020-11-01" @default.
- W3082568082 modified "2023-10-12" @default.
- W3082568082 title "Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness" @default.
- W3082568082 cites W1959252129 @default.
- W3082568082 cites W1965504779 @default.
- W3082568082 cites W1971950898 @default.
- W3082568082 cites W1972506548 @default.
- W3082568082 cites W1983048169 @default.
- W3082568082 cites W1996174950 @default.
- W3082568082 cites W2000380444 @default.
- W3082568082 cites W2016737803 @default.
- W3082568082 cites W2027180718 @default.
- W3082568082 cites W2033748960 @default.
- W3082568082 cites W2035082881 @default.
- W3082568082 cites W2038580796 @default.
- W3082568082 cites W2044475370 @default.
- W3082568082 cites W2060678338 @default.
- W3082568082 cites W2064440315 @default.
- W3082568082 cites W2076467423 @default.
- W3082568082 cites W2083147211 @default.
- W3082568082 cites W2138406911 @default.
- W3082568082 cites W2158066648 @default.
- W3082568082 cites W2165885486 @default.
- W3082568082 cites W2168189026 @default.
- W3082568082 cites W2187069766 @default.
- W3082568082 cites W2286851149 @default.
- W3082568082 cites W2491984883 @default.
- W3082568082 cites W2512493486 @default.
- W3082568082 cites W2751654976 @default.
- W3082568082 cites W2781838668 @default.
- W3082568082 cites W2789943828 @default.
- W3082568082 cites W2797101331 @default.
- W3082568082 cites W2797744287 @default.
- W3082568082 cites W2802530919 @default.
- W3082568082 cites W2802711874 @default.
- W3082568082 cites W2808926426 @default.
- W3082568082 cites W2892413472 @default.
- W3082568082 cites W2904759379 @default.
- W3082568082 cites W2905919967 @default.
- W3082568082 cites W2907061239 @default.
- W3082568082 cites W2908235220 @default.
- W3082568082 cites W2911489525 @default.
- W3082568082 cites W2965864642 @default.
- W3082568082 cites W2998573018 @default.
- W3082568082 cites W3000826839 @default.
- W3082568082 cites W3012144963 @default.
- W3082568082 cites W3013353334 @default.
- W3082568082 cites W326958576 @default.
- W3082568082 cites W4213136431 @default.
- W3082568082 doi "https://doi.org/10.1016/j.applthermaleng.2020.115961" @default.
- W3082568082 hasPublicationYear "2020" @default.
- W3082568082 type Work @default.
- W3082568082 sameAs 3082568082 @default.
- W3082568082 citedByCount "20" @default.
- W3082568082 countsByYear W30825680822020 @default.
- W3082568082 countsByYear W30825680822021 @default.
- W3082568082 countsByYear W30825680822022 @default.
- W3082568082 countsByYear W30825680822023 @default.
- W3082568082 crossrefType "journal-article" @default.
- W3082568082 hasAuthorship W3082568082A5014794860 @default.
- W3082568082 hasAuthorship W3082568082A5025367879 @default.
- W3082568082 hasAuthorship W3082568082A5063133318 @default.
- W3082568082 hasAuthorship W3082568082A5082489604 @default.
- W3082568082 hasAuthorship W3082568082A5088548272 @default.
- W3082568082 hasAuthorship W3082568082A5090466238 @default.
- W3082568082 hasConcept C105569014 @default.
- W3082568082 hasConcept C114088122 @default.
- W3082568082 hasConcept C121332964 @default.
- W3082568082 hasConcept C130230704 @default.
- W3082568082 hasConcept C159188206 @default.
- W3082568082 hasConcept C159985019 @default.
- W3082568082 hasConcept C182748727 @default.
- W3082568082 hasConcept C186937647 @default.
- W3082568082 hasConcept C192562407 @default.
- W3082568082 hasConcept C196558001 @default.
- W3082568082 hasConcept C21946209 @default.
- W3082568082 hasConcept C2779459783 @default.
- W3082568082 hasConcept C29700514 @default.
- W3082568082 hasConcept C47519245 @default.
- W3082568082 hasConcept C50517652 @default.
- W3082568082 hasConcept C57879066 @default.
- W3082568082 hasConcept C6648577 @default.
- W3082568082 hasConcept C97355855 @default.
- W3082568082 hasConceptScore W3082568082C105569014 @default.
- W3082568082 hasConceptScore W3082568082C114088122 @default.
- W3082568082 hasConceptScore W3082568082C121332964 @default.
- W3082568082 hasConceptScore W3082568082C130230704 @default.
- W3082568082 hasConceptScore W3082568082C159188206 @default.
- W3082568082 hasConceptScore W3082568082C159985019 @default.
- W3082568082 hasConceptScore W3082568082C182748727 @default.