Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082620512> ?p ?o ?g. }
- W3082620512 endingPage "59" @default.
- W3082620512 startingPage "51" @default.
- W3082620512 abstract "Rationale: The computed tomography (CT) pattern of definite or probable usual interstitial pneumonia (UIP) can be diagnostic of idiopathic pulmonary fibrosis and may obviate the need for invasive surgical biopsy. Few machine-learning studies have investigated the classification of interstitial lung disease (ILD) on CT imaging, but none have used histopathology as a reference standard.Objectives: To predict histopathologic UIP using deep learning of high-resolution computed tomography (HRCT).Methods: Institutional databases were retrospectively searched for consecutive patients with ILD, HRCT, and diagnostic histopathology from 2011 to 2014 (training cohort) and from 2016 to 2017 (testing cohort). A blinded expert radiologist and pulmonologist reviewed all training HRCT scans in consensus and classified HRCT scans based on the 2018 American Thoracic Society/European Respriatory Society/Japanese Respiratory Society/Latin American Thoracic Association diagnostic criteria for idiopathic pulmonary fibrosis. A convolutional neural network (CNN) was built accepting 4 × 4 × 2 cm virtual wedges of peripheral lung on HRCT as input and outputting the UIP histopathologic pattern. The CNN was trained and evaluated on the training cohort using fivefold cross validation and was then tested on the hold-out testing cohort. CNN and human performance were compared in the training cohort. Logistic regression and survival analyses were performed.Results: The CNN was trained on 221 patients (median age 60 yr; interquartile range [IQR], 53-66), including 71 patients (32%) with UIP or probable UIP histopathologic patterns. The CNN was tested on a separate hold-out cohort of 80 patients (median age 66 yr; IQR, 58-69), including 22 patients (27%) with UIP or probable UIP histopathologic patterns. An average of 516 wedges were generated per patient. The percentage of wedges with CNN-predicted UIP yielded a cross validation area under the curve of 74% for histopathological UIP pattern per patient. The optimal cutoff point for classifying patients on the training cohort was 16.5% of virtual lung wedges with CNN-predicted UIP and resulted in sensitivity and specificity of 74% and 58%, respectively, in the testing cohort. CNN-predicted UIP was associated with an increased risk of death or lung transplantation during cross validation (hazard ratio, 1.5; 95% confidence interval, 1.1-2.2; P = 0.03).Conclusions: Virtual lung wedge resection in patients with ILD can be used as an input to a CNN for predicting the histopathologic UIP pattern and transplant-free survival." @default.
- W3082620512 created "2020-09-08" @default.
- W3082620512 creator A5004022151 @default.
- W3082620512 creator A5006597573 @default.
- W3082620512 creator A5012995283 @default.
- W3082620512 creator A5021331482 @default.
- W3082620512 creator A5028751751 @default.
- W3082620512 creator A5043090880 @default.
- W3082620512 creator A5045203105 @default.
- W3082620512 creator A5050561431 @default.
- W3082620512 creator A5061011299 @default.
- W3082620512 creator A5074397580 @default.
- W3082620512 date "2021-01-01" @default.
- W3082620512 modified "2023-10-17" @default.
- W3082620512 title "Deep Learning of Computed Tomography Virtual Wedge Resection for Prediction of Histologic Usual Interstitial Pneumonitis" @default.
- W3082620512 cites W2057292199 @default.
- W3082620512 cites W2138871107 @default.
- W3082620512 cites W2139350560 @default.
- W3082620512 cites W2145042078 @default.
- W3082620512 cites W2149661971 @default.
- W3082620512 cites W2152974152 @default.
- W3082620512 cites W2166267091 @default.
- W3082620512 cites W2167383172 @default.
- W3082620512 cites W2168666423 @default.
- W3082620512 cites W2174661749 @default.
- W3082620512 cites W2208096782 @default.
- W3082620512 cites W2418101495 @default.
- W3082620512 cites W2466920981 @default.
- W3082620512 cites W2489091104 @default.
- W3082620512 cites W2770589251 @default.
- W3082620512 cites W2783687327 @default.
- W3082620512 cites W2799479598 @default.
- W3082620512 cites W2891706393 @default.
- W3082620512 cites W2919356958 @default.
- W3082620512 cites W2944540533 @default.
- W3082620512 cites W2964227401 @default.
- W3082620512 doi "https://doi.org/10.1513/annalsats.202001-068oc" @default.
- W3082620512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8094440" @default.
- W3082620512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32857594" @default.
- W3082620512 hasPublicationYear "2021" @default.
- W3082620512 type Work @default.
- W3082620512 sameAs 3082620512 @default.
- W3082620512 citedByCount "15" @default.
- W3082620512 countsByYear W30826205122021 @default.
- W3082620512 countsByYear W30826205122022 @default.
- W3082620512 countsByYear W30826205122023 @default.
- W3082620512 crossrefType "journal-article" @default.
- W3082620512 hasAuthorship W3082620512A5004022151 @default.
- W3082620512 hasAuthorship W3082620512A5006597573 @default.
- W3082620512 hasAuthorship W3082620512A5012995283 @default.
- W3082620512 hasAuthorship W3082620512A5021331482 @default.
- W3082620512 hasAuthorship W3082620512A5028751751 @default.
- W3082620512 hasAuthorship W3082620512A5043090880 @default.
- W3082620512 hasAuthorship W3082620512A5045203105 @default.
- W3082620512 hasAuthorship W3082620512A5050561431 @default.
- W3082620512 hasAuthorship W3082620512A5061011299 @default.
- W3082620512 hasAuthorship W3082620512A5074397580 @default.
- W3082620512 hasBestOaLocation W30826205122 @default.
- W3082620512 hasConcept C119060515 @default.
- W3082620512 hasConcept C126322002 @default.
- W3082620512 hasConcept C126838900 @default.
- W3082620512 hasConcept C141071460 @default.
- W3082620512 hasConcept C142724271 @default.
- W3082620512 hasConcept C2777134676 @default.
- W3082620512 hasConcept C2777405647 @default.
- W3082620512 hasConcept C2777524225 @default.
- W3082620512 hasConcept C2777543607 @default.
- W3082620512 hasConcept C2777714996 @default.
- W3082620512 hasConcept C2778341716 @default.
- W3082620512 hasConcept C544519230 @default.
- W3082620512 hasConcept C544855455 @default.
- W3082620512 hasConcept C71924100 @default.
- W3082620512 hasConcept C72563966 @default.
- W3082620512 hasConceptScore W3082620512C119060515 @default.
- W3082620512 hasConceptScore W3082620512C126322002 @default.
- W3082620512 hasConceptScore W3082620512C126838900 @default.
- W3082620512 hasConceptScore W3082620512C141071460 @default.
- W3082620512 hasConceptScore W3082620512C142724271 @default.
- W3082620512 hasConceptScore W3082620512C2777134676 @default.
- W3082620512 hasConceptScore W3082620512C2777405647 @default.
- W3082620512 hasConceptScore W3082620512C2777524225 @default.
- W3082620512 hasConceptScore W3082620512C2777543607 @default.
- W3082620512 hasConceptScore W3082620512C2777714996 @default.
- W3082620512 hasConceptScore W3082620512C2778341716 @default.
- W3082620512 hasConceptScore W3082620512C544519230 @default.
- W3082620512 hasConceptScore W3082620512C544855455 @default.
- W3082620512 hasConceptScore W3082620512C71924100 @default.
- W3082620512 hasConceptScore W3082620512C72563966 @default.
- W3082620512 hasIssue "1" @default.
- W3082620512 hasLocation W30826205121 @default.
- W3082620512 hasLocation W30826205122 @default.
- W3082620512 hasLocation W30826205123 @default.
- W3082620512 hasOpenAccess W3082620512 @default.
- W3082620512 hasPrimaryLocation W30826205121 @default.
- W3082620512 hasRelatedWork W1914576479 @default.
- W3082620512 hasRelatedWork W2154920684 @default.
- W3082620512 hasRelatedWork W2338221602 @default.
- W3082620512 hasRelatedWork W2514155226 @default.