Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082764105> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3082764105 abstract "<p>Earthquake-induced land deformation and structure failure are more severe over soft soils than over firm soils and rocks owing to the seismic site effect and liquefaction. The site-specific seismic site effect related to the amplification of ground motion has spatial uncertainty depend on the local subsurface, surface geological, and topographic conditions. When the 2017 Pohang earthquake (M 5.4), South Korea&#8217;s second-strongest earthquake in decades, occurred, the severe damages influencing by variable site effect indicators were observed focusing on the basin or basin-edge region deposited unconsolidated Quaternary sediments. Thus, the site characterization is essential considering empirical correlations with geotechnical site response parameters and surface proxies. Furthermore, in the case of so many variables and tenuously related correlations, machine learning classification models can prove to be very precise than the parametric methods. In this study, the multivariate seismic site classification system was established using the machine learning technique based on the geospatial big data platform.</p><p>The supervised machine learning classification techniques and more specifically, random forest, support vector machine (SVM), and artificial neural network (ANN) algorithms have been adopted. Supervised machine learning algorithms analyze a set of labeled training data consisting of a set of input data and desired output values, and produce an inferred function which can be used for predictions from given input data. To optimize the classification criteria by considering the geotechnical uncertainty and local site effects, the training datasets applying principal component analysis (PCA) were verified with k-fold cross-validation. Moreover, the optimized training algorithm, proved by loss estimators (receiver operating characteristic curve (ROC), the area under the ROC curve (AUC)) based on the confusion matrix, was selected.</p><p>For the southeastern region in South Korea, the boring log information (strata, standard penetration test, etc.), geological map (1:50k scale), digital terrain model (having 5 m &#215; 5 m), soil map (1:250k scale) were collected and constructed as geospatial big data. Preliminarily, to build spatially coincided datasets with geotechnical response parameters and surface proxies, the mesh-type geospatial information was built by the advanced geostatistical interpolation and simulation methods.</p><p>Site classification systems use seismic response parameters related to the geotechnical characteristics of the study area as the classification criteria. The current site classification systems in South Korea and the United States recommend Vs30, which is the average shear wave velocity (Vs) up to 30 m underground. This criterion uses only the dynamic characteristics of the site without considering its geometric distribution characteristics. Thus, the geospatial information for the input layer included the geo-layer thickness, surface proxies (elevation, slope, geological category, soil category), average Vs for soil layer (Vs,soil) and site period (TG). The Vs30-based site class was defined as categorical labeled data. Finally, the site class can be predicted using only proxies based on the optimized classification techniques.</p>" @default.
- W3082764105 created "2020-09-08" @default.
- W3082764105 creator A5074151814 @default.
- W3082764105 creator A5079197544 @default.
- W3082764105 creator A5083388052 @default.
- W3082764105 creator A5060837012 @default.
- W3082764105 date "2020-03-23" @default.
- W3082764105 modified "2023-09-26" @default.
- W3082764105 title "Machine Learning based Multivariate Seismic Site Classification System for South Korea" @default.
- W3082764105 doi "https://doi.org/10.5194/egusphere-egu2020-10937" @default.
- W3082764105 hasPublicationYear "2020" @default.
- W3082764105 type Work @default.
- W3082764105 sameAs 3082764105 @default.
- W3082764105 citedByCount "0" @default.
- W3082764105 crossrefType "posted-content" @default.
- W3082764105 hasAuthorship W3082764105A5060837012 @default.
- W3082764105 hasAuthorship W3082764105A5074151814 @default.
- W3082764105 hasAuthorship W3082764105A5079197544 @default.
- W3082764105 hasAuthorship W3082764105A5083388052 @default.
- W3082764105 hasConcept C105795698 @default.
- W3082764105 hasConcept C117251300 @default.
- W3082764105 hasConcept C119857082 @default.
- W3082764105 hasConcept C12267149 @default.
- W3082764105 hasConcept C127313418 @default.
- W3082764105 hasConcept C154945302 @default.
- W3082764105 hasConcept C161584116 @default.
- W3082764105 hasConcept C169258074 @default.
- W3082764105 hasConcept C33923547 @default.
- W3082764105 hasConcept C41008148 @default.
- W3082764105 hasConcept C50644808 @default.
- W3082764105 hasConcept C62649853 @default.
- W3082764105 hasConcept C9770341 @default.
- W3082764105 hasConceptScore W3082764105C105795698 @default.
- W3082764105 hasConceptScore W3082764105C117251300 @default.
- W3082764105 hasConceptScore W3082764105C119857082 @default.
- W3082764105 hasConceptScore W3082764105C12267149 @default.
- W3082764105 hasConceptScore W3082764105C127313418 @default.
- W3082764105 hasConceptScore W3082764105C154945302 @default.
- W3082764105 hasConceptScore W3082764105C161584116 @default.
- W3082764105 hasConceptScore W3082764105C169258074 @default.
- W3082764105 hasConceptScore W3082764105C33923547 @default.
- W3082764105 hasConceptScore W3082764105C41008148 @default.
- W3082764105 hasConceptScore W3082764105C50644808 @default.
- W3082764105 hasConceptScore W3082764105C62649853 @default.
- W3082764105 hasConceptScore W3082764105C9770341 @default.
- W3082764105 hasLocation W30827641051 @default.
- W3082764105 hasOpenAccess W3082764105 @default.
- W3082764105 hasPrimaryLocation W30827641051 @default.
- W3082764105 hasRelatedWork W10576317 @default.
- W3082764105 hasRelatedWork W12757606 @default.
- W3082764105 hasRelatedWork W168952 @default.
- W3082764105 hasRelatedWork W4056941 @default.
- W3082764105 hasRelatedWork W4185409 @default.
- W3082764105 hasRelatedWork W4904158 @default.
- W3082764105 hasRelatedWork W5558071 @default.
- W3082764105 hasRelatedWork W5677186 @default.
- W3082764105 hasRelatedWork W7597497 @default.
- W3082764105 hasRelatedWork W2133450 @default.
- W3082764105 isParatext "false" @default.
- W3082764105 isRetracted "false" @default.
- W3082764105 magId "3082764105" @default.
- W3082764105 workType "article" @default.