Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082841394> ?p ?o ?g. }
- W3082841394 abstract "We study the boundary charge $Q_B$ of generic semi-infinite one-dimensional insulators with translational invariance and show that non-local symmetries (i.e., including translations) lead to rational quantizations $p/q$ of $Q_B$. In particular, we find that (up to an unknown integer) the quantization of $Q_B$ is given in integer units of $frac{1}{2}bar{rho}$ and $frac{1}{2}(bar{rho}-1)$, where $bar{rho}$ is the average charge per site (which is a rational number for an insulator). This is a direct generalization of the known half-integer quantization of $Q_B$ for systems with local inversion or local chiral symmetries to any rational value. Quite remarkably, this rational quantization remains valid even in the presence of short-ranged electron-electron interactions as well as static random disorder (breaking translational invariance). This striking stability can be traced back to the fact that local perturbations in insulators induce only local charge redistributions. We establish this result with complementary methods including density matrix renormalization group calculations, bosonization methods, and exact solutions for particular lattice models. Furthermore, for the special case of half-filling $bar{rho}=frac{1}{2}$, we present explicit results in single-channel and nearest-neighbor hopping models and identify Weyl semimetal physics at gap closing points. Our general framework also allows us to shed new light on the well-known rational quantization of soliton charges at domain walls." @default.
- W3082841394 created "2020-09-08" @default.
- W3082841394 creator A5005153531 @default.
- W3082841394 creator A5010879789 @default.
- W3082841394 creator A5018752189 @default.
- W3082841394 creator A5025387077 @default.
- W3082841394 creator A5041982379 @default.
- W3082841394 creator A5086495225 @default.
- W3082841394 date "2020-09-01" @default.
- W3082841394 modified "2023-09-26" @default.
- W3082841394 title "Rational boundary charge in one-dimensional systems with interaction and disorder" @default.
- W3082841394 cites W1501955150 @default.
- W3082841394 cites W1514707913 @default.
- W3082841394 cites W1522389968 @default.
- W3082841394 cites W1590194614 @default.
- W3082841394 cites W1597815195 @default.
- W3082841394 cites W1657455754 @default.
- W3082841394 cites W1784129591 @default.
- W3082841394 cites W1800177308 @default.
- W3082841394 cites W1824665345 @default.
- W3082841394 cites W1858384429 @default.
- W3082841394 cites W1963636355 @default.
- W3082841394 cites W1963826472 @default.
- W3082841394 cites W1964526154 @default.
- W3082841394 cites W1969558316 @default.
- W3082841394 cites W1971217880 @default.
- W3082841394 cites W1973490797 @default.
- W3082841394 cites W1978762857 @default.
- W3082841394 cites W1979417546 @default.
- W3082841394 cites W1985972112 @default.
- W3082841394 cites W1986103570 @default.
- W3082841394 cites W1989250610 @default.
- W3082841394 cites W1989521778 @default.
- W3082841394 cites W1991260972 @default.
- W3082841394 cites W1996220162 @default.
- W3082841394 cites W1997353813 @default.
- W3082841394 cites W1997560966 @default.
- W3082841394 cites W2001083695 @default.
- W3082841394 cites W2002631105 @default.
- W3082841394 cites W2003397144 @default.
- W3082841394 cites W2005517969 @default.
- W3082841394 cites W2010087266 @default.
- W3082841394 cites W2010367733 @default.
- W3082841394 cites W2010555204 @default.
- W3082841394 cites W2013832056 @default.
- W3082841394 cites W2016163529 @default.
- W3082841394 cites W2016592571 @default.
- W3082841394 cites W2019176261 @default.
- W3082841394 cites W2019535180 @default.
- W3082841394 cites W2024146103 @default.
- W3082841394 cites W2024591030 @default.
- W3082841394 cites W2026934396 @default.
- W3082841394 cites W2027823340 @default.
- W3082841394 cites W2028038483 @default.
- W3082841394 cites W2029258203 @default.
- W3082841394 cites W2031435515 @default.
- W3082841394 cites W2035165826 @default.
- W3082841394 cites W2037807652 @default.
- W3082841394 cites W2038722631 @default.
- W3082841394 cites W2039946311 @default.
- W3082841394 cites W2041331368 @default.
- W3082841394 cites W2041429472 @default.
- W3082841394 cites W2041847669 @default.
- W3082841394 cites W2042938036 @default.
- W3082841394 cites W2047385567 @default.
- W3082841394 cites W2054186641 @default.
- W3082841394 cites W2054225720 @default.
- W3082841394 cites W2055902517 @default.
- W3082841394 cites W2057042903 @default.
- W3082841394 cites W2058557380 @default.
- W3082841394 cites W2058632461 @default.
- W3082841394 cites W2059221944 @default.
- W3082841394 cites W2059352541 @default.
- W3082841394 cites W2060115196 @default.
- W3082841394 cites W2060799481 @default.
- W3082841394 cites W2062089197 @default.
- W3082841394 cites W2062535261 @default.
- W3082841394 cites W2069479893 @default.
- W3082841394 cites W2072565812 @default.
- W3082841394 cites W2072703702 @default.
- W3082841394 cites W2073529894 @default.
- W3082841394 cites W2074246944 @default.
- W3082841394 cites W2074950413 @default.
- W3082841394 cites W2076213015 @default.
- W3082841394 cites W2077896911 @default.
- W3082841394 cites W2082214557 @default.
- W3082841394 cites W2085158440 @default.
- W3082841394 cites W2086065463 @default.
- W3082841394 cites W2113547701 @default.
- W3082841394 cites W2135043961 @default.
- W3082841394 cites W2139281352 @default.
- W3082841394 cites W2141240101 @default.
- W3082841394 cites W2142501550 @default.
- W3082841394 cites W2151895170 @default.
- W3082841394 cites W2155171871 @default.
- W3082841394 cites W2167975496 @default.
- W3082841394 cites W2215061879 @default.
- W3082841394 cites W2238665249 @default.
- W3082841394 cites W2262711015 @default.
- W3082841394 cites W2275620491 @default.