Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082952492> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3082952492 endingPage "303" @default.
- W3082952492 startingPage "287" @default.
- W3082952492 abstract "With increasing use of machine learning activities in various fields, subtle usage of data is changing the face of our world by providing high productivity and efficiency. Data is vital element and fuel for the upcoming time where it will help world with analytical strengths and autonomous features. Data which is collection of facts includes various statistical and non-statistical information like numbers, text, observations, images, sound, video and Web scrappage data which has been translated into the analytical insights through which computer can process these data and give outcome as quantitative and qualitative predictions. Nowadays, in financial domain, social media analytics and outcomes are major attraction that would help to accelerate the business to new heights. Financial services have opted for social media tracking and conversational analysis, but using financial recommendation using machine learning can add new business angles. Our intelligent agent will take different parameters like income to spent ratio, region, working profiles and economical measures which are generated by user profile and his social media behaviour. We have efficiently applied cluster analysis and put users into different groups for investments and recommend various funds by analysis." @default.
- W3082952492 created "2020-09-08" @default.
- W3082952492 creator A5019915904 @default.
- W3082952492 creator A5051206480 @default.
- W3082952492 date "2020-08-28" @default.
- W3082952492 modified "2023-10-12" @default.
- W3082952492 title "Social Media Analytics and Mutual Fund Recommendation" @default.
- W3082952492 cites W208911654 @default.
- W3082952492 cites W2209610041 @default.
- W3082952492 cites W2518345121 @default.
- W3082952492 cites W2769852947 @default.
- W3082952492 cites W2794710198 @default.
- W3082952492 cites W2796719423 @default.
- W3082952492 cites W2809349325 @default.
- W3082952492 cites W2811103148 @default.
- W3082952492 cites W2891374205 @default.
- W3082952492 cites W2912040536 @default.
- W3082952492 cites W3049704489 @default.
- W3082952492 doi "https://doi.org/10.1007/978-981-15-5077-5_26" @default.
- W3082952492 hasPublicationYear "2020" @default.
- W3082952492 type Work @default.
- W3082952492 sameAs 3082952492 @default.
- W3082952492 citedByCount "1" @default.
- W3082952492 countsByYear W30829524922022 @default.
- W3082952492 crossrefType "book-chapter" @default.
- W3082952492 hasAuthorship W3082952492A5019915904 @default.
- W3082952492 hasAuthorship W3082952492A5051206480 @default.
- W3082952492 hasConcept C10138342 @default.
- W3082952492 hasConcept C111919701 @default.
- W3082952492 hasConcept C124101348 @default.
- W3082952492 hasConcept C134306372 @default.
- W3082952492 hasConcept C136764020 @default.
- W3082952492 hasConcept C139043278 @default.
- W3082952492 hasConcept C139719470 @default.
- W3082952492 hasConcept C144133560 @default.
- W3082952492 hasConcept C162324750 @default.
- W3082952492 hasConcept C175801342 @default.
- W3082952492 hasConcept C204983608 @default.
- W3082952492 hasConcept C2522767166 @default.
- W3082952492 hasConcept C2778729106 @default.
- W3082952492 hasConcept C33923547 @default.
- W3082952492 hasConcept C36503486 @default.
- W3082952492 hasConcept C41008148 @default.
- W3082952492 hasConcept C518677369 @default.
- W3082952492 hasConcept C79158427 @default.
- W3082952492 hasConcept C98045186 @default.
- W3082952492 hasConceptScore W3082952492C10138342 @default.
- W3082952492 hasConceptScore W3082952492C111919701 @default.
- W3082952492 hasConceptScore W3082952492C124101348 @default.
- W3082952492 hasConceptScore W3082952492C134306372 @default.
- W3082952492 hasConceptScore W3082952492C136764020 @default.
- W3082952492 hasConceptScore W3082952492C139043278 @default.
- W3082952492 hasConceptScore W3082952492C139719470 @default.
- W3082952492 hasConceptScore W3082952492C144133560 @default.
- W3082952492 hasConceptScore W3082952492C162324750 @default.
- W3082952492 hasConceptScore W3082952492C175801342 @default.
- W3082952492 hasConceptScore W3082952492C204983608 @default.
- W3082952492 hasConceptScore W3082952492C2522767166 @default.
- W3082952492 hasConceptScore W3082952492C2778729106 @default.
- W3082952492 hasConceptScore W3082952492C33923547 @default.
- W3082952492 hasConceptScore W3082952492C36503486 @default.
- W3082952492 hasConceptScore W3082952492C41008148 @default.
- W3082952492 hasConceptScore W3082952492C518677369 @default.
- W3082952492 hasConceptScore W3082952492C79158427 @default.
- W3082952492 hasConceptScore W3082952492C98045186 @default.
- W3082952492 hasLocation W30829524921 @default.
- W3082952492 hasOpenAccess W3082952492 @default.
- W3082952492 hasPrimaryLocation W30829524921 @default.
- W3082952492 hasRelatedWork W1440043730 @default.
- W3082952492 hasRelatedWork W2309196980 @default.
- W3082952492 hasRelatedWork W2588424695 @default.
- W3082952492 hasRelatedWork W2752017774 @default.
- W3082952492 hasRelatedWork W2962519155 @default.
- W3082952492 hasRelatedWork W3092201768 @default.
- W3082952492 hasRelatedWork W4200138770 @default.
- W3082952492 hasRelatedWork W4226266853 @default.
- W3082952492 hasRelatedWork W4232432449 @default.
- W3082952492 hasRelatedWork W4386456676 @default.
- W3082952492 isParatext "false" @default.
- W3082952492 isRetracted "false" @default.
- W3082952492 magId "3082952492" @default.
- W3082952492 workType "book-chapter" @default.