Matches in SemOpenAlex for { <https://semopenalex.org/work/W3082952501> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3082952501 abstract "Volumetric medical image registration has important clinical significance. Traditional registration methods may be time-consuming when processing large volumetric data due to their iterative optimizations. In contrast, existing deep learning-based networks can obtain the registration quickly. However, most of them require independent rigid alignment before deformable registration; these two steps are often performed separately and cannot be end-to-end. Moreover, registration ground-truth is difficult to obtain for supervised learning methods. To tackle the above issues, we propose an unsupervised 3D end-to-end deformable registration network. The proposed network cascades two subnetworks; the first one is for obtaining affine alignment, and the second one is a deformable subnetwork for achieving the non-rigid registration. The parameters of the two subnetworks are shared. The global and local similarity measures are used as loss functions for the two subnetworks, respectively. The trained network can perform end-to-end deformable registration. We conducted experiments on brain MRI datasets (LPBA40, Mindboggle101, and IXI) and experimental results demonstrate the efficacy of the proposed registration network." @default.
- W3082952501 created "2020-09-08" @default.
- W3082952501 creator A5003734998 @default.
- W3082952501 creator A5013392906 @default.
- W3082952501 creator A5056461668 @default.
- W3082952501 creator A5065374358 @default.
- W3082952501 creator A5075391374 @default.
- W3082952501 creator A5090692315 @default.
- W3082952501 date "2020-07-01" @default.
- W3082952501 modified "2023-09-23" @default.
- W3082952501 title "Unsupervised 3D End-to-end Deformable Network for Brain MRI Registration" @default.
- W3082952501 cites W1970928383 @default.
- W3082952501 cites W2019587683 @default.
- W3082952501 cites W2083099567 @default.
- W3082952501 cites W2102099319 @default.
- W3082952501 cites W2115167851 @default.
- W3082952501 cites W2170167891 @default.
- W3082952501 cites W2752246523 @default.
- W3082952501 cites W2891590469 @default.
- W3082952501 cites W2945717355 @default.
- W3082952501 cites W2963196212 @default.
- W3082952501 cites W2963904328 @default.
- W3082952501 cites W2966108228 @default.
- W3082952501 cites W2979431346 @default.
- W3082952501 cites W3098269293 @default.
- W3082952501 doi "https://doi.org/10.1109/embc44109.2020.9176475" @default.
- W3082952501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33018240" @default.
- W3082952501 hasPublicationYear "2020" @default.
- W3082952501 type Work @default.
- W3082952501 sameAs 3082952501 @default.
- W3082952501 citedByCount "7" @default.
- W3082952501 countsByYear W30829525012020 @default.
- W3082952501 countsByYear W30829525012021 @default.
- W3082952501 countsByYear W30829525012022 @default.
- W3082952501 countsByYear W30829525012023 @default.
- W3082952501 crossrefType "proceedings-article" @default.
- W3082952501 hasAuthorship W3082952501A5003734998 @default.
- W3082952501 hasAuthorship W3082952501A5013392906 @default.
- W3082952501 hasAuthorship W3082952501A5056461668 @default.
- W3082952501 hasAuthorship W3082952501A5065374358 @default.
- W3082952501 hasAuthorship W3082952501A5075391374 @default.
- W3082952501 hasAuthorship W3082952501A5090692315 @default.
- W3082952501 hasConcept C103278499 @default.
- W3082952501 hasConcept C115961682 @default.
- W3082952501 hasConcept C146849305 @default.
- W3082952501 hasConcept C153180895 @default.
- W3082952501 hasConcept C154945302 @default.
- W3082952501 hasConcept C166704113 @default.
- W3082952501 hasConcept C202444582 @default.
- W3082952501 hasConcept C2780186347 @default.
- W3082952501 hasConcept C31972630 @default.
- W3082952501 hasConcept C33923547 @default.
- W3082952501 hasConcept C38652104 @default.
- W3082952501 hasConcept C41008148 @default.
- W3082952501 hasConcept C74296488 @default.
- W3082952501 hasConcept C92757383 @default.
- W3082952501 hasConceptScore W3082952501C103278499 @default.
- W3082952501 hasConceptScore W3082952501C115961682 @default.
- W3082952501 hasConceptScore W3082952501C146849305 @default.
- W3082952501 hasConceptScore W3082952501C153180895 @default.
- W3082952501 hasConceptScore W3082952501C154945302 @default.
- W3082952501 hasConceptScore W3082952501C166704113 @default.
- W3082952501 hasConceptScore W3082952501C202444582 @default.
- W3082952501 hasConceptScore W3082952501C2780186347 @default.
- W3082952501 hasConceptScore W3082952501C31972630 @default.
- W3082952501 hasConceptScore W3082952501C33923547 @default.
- W3082952501 hasConceptScore W3082952501C38652104 @default.
- W3082952501 hasConceptScore W3082952501C41008148 @default.
- W3082952501 hasConceptScore W3082952501C74296488 @default.
- W3082952501 hasConceptScore W3082952501C92757383 @default.
- W3082952501 hasLocation W30829525011 @default.
- W3082952501 hasLocation W30829525012 @default.
- W3082952501 hasOpenAccess W3082952501 @default.
- W3082952501 hasPrimaryLocation W30829525011 @default.
- W3082952501 hasRelatedWork W1632903234 @default.
- W3082952501 hasRelatedWork W2009466720 @default.
- W3082952501 hasRelatedWork W2011443206 @default.
- W3082952501 hasRelatedWork W2024152175 @default.
- W3082952501 hasRelatedWork W2536727263 @default.
- W3082952501 hasRelatedWork W2891590469 @default.
- W3082952501 hasRelatedWork W3004045746 @default.
- W3082952501 hasRelatedWork W3133241348 @default.
- W3082952501 hasRelatedWork W3163375306 @default.
- W3082952501 hasRelatedWork W4385294453 @default.
- W3082952501 isParatext "false" @default.
- W3082952501 isRetracted "false" @default.
- W3082952501 magId "3082952501" @default.
- W3082952501 workType "article" @default.