Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083001031> ?p ?o ?g. }
- W3083001031 endingPage "107044" @default.
- W3083001031 startingPage "107044" @default.
- W3083001031 abstract "Paroxysmal activity represents an end-member in the common range of activity at mafic arc volcanoes, characterised by rapid transitions across the effusive-explosive interface and thus posing significant challenges to hazard assessment. Conceptual models to explain changes in the frequency and magnitude of these paroxysmal events are based either on magma recharge or an increase in gas flux, largely framed in the context of two-phase flow. Gas- and magma-driven models are both viable mechanisms to explain the varying styles of paroxysmal behaviour observed in mafic systems; however, each has different implications for future activity. We present time series petrologic data for ash and lava samples collected at Volcan de Fuego, Guatemala, during paroxysmal eruptions between 2011 and 2018. We show that a step-change in glass composition occurred between 2015 and 2016, reflecting an increase in magma temperature and a reduction in pre-eruptive crystallisation, concurrent with an escalation in the frequency of paroxysmal activity. There was no change in the bulk or phase compositions during this period. To explain these observations, we propose that the increase in frequency of paroxysmal eruptions is modulated by the supply of exsolved volatiles from lower crustal degassing magmas, without invoking repeated transfer of new, primitive magma to a shallow reservoir. Protracted lava effusion, accompanied by more vigorous and more frequent Strombolian explosions and gas ‘chugging’, prior to the transition to sustained fountaining suggests that gas retention in crystal-rich magma may modulate the height of the magma column as gas supply increases.Slow decompression associated with effusion may determine the timing of effusive to explosive transitions in mafic arc systems more generally. A large paroxysmal eruption of Fuego on 3 June 2018, notable for the rapid escalation in eruptive intensity several hours into the eruption, produced ash with a range of textures and glass compositions consistent with magma evacuation over a range of depths and decompression rates. Given the protracted repose time between paroxysms before this event, we suggest that a shallow crystallised plug degraded, and ultimately failed, several hours into the eruption of 3 June 2018, triggering top-down decompression of magma in the conduit synchronous with the observed rapid acceleration in eruption rate. Ultimately, we propose that the frequency of paroxysms at Fuego is broadly proportional to the gas supply rate, while the range in glass compositions is related to the repose time prior to eruptive activity. Our data illustrate the potential of petrologic monitoring to distinguish between gas- and magma-driven paroxysm triggers and to anticipate future events, especially when interpreted in the context of geophysical observations and implemented within community-based ash collection initiatives." @default.
- W3083001031 created "2020-09-11" @default.
- W3083001031 creator A5018406813 @default.
- W3083001031 creator A5022233652 @default.
- W3083001031 creator A5032083117 @default.
- W3083001031 creator A5032715187 @default.
- W3083001031 creator A5033659181 @default.
- W3083001031 creator A5038657321 @default.
- W3083001031 creator A5077640243 @default.
- W3083001031 creator A5090138367 @default.
- W3083001031 date "2020-11-01" @default.
- W3083001031 modified "2023-10-18" @default.
- W3083001031 title "Petrologic monitoring at Volcán de Fuego, Guatemala" @default.
- W3083001031 cites W1517410089 @default.
- W3083001031 cites W1526768138 @default.
- W3083001031 cites W1537069669 @default.
- W3083001031 cites W1543655425 @default.
- W3083001031 cites W1645959373 @default.
- W3083001031 cites W1647116289 @default.
- W3083001031 cites W1660562005 @default.
- W3083001031 cites W1896492402 @default.
- W3083001031 cites W1912081172 @default.
- W3083001031 cites W1964335447 @default.
- W3083001031 cites W1966395795 @default.
- W3083001031 cites W1972430985 @default.
- W3083001031 cites W1975195014 @default.
- W3083001031 cites W1979177126 @default.
- W3083001031 cites W1979611481 @default.
- W3083001031 cites W1980469573 @default.
- W3083001031 cites W1986666020 @default.
- W3083001031 cites W1989883697 @default.
- W3083001031 cites W1990014292 @default.
- W3083001031 cites W1997671869 @default.
- W3083001031 cites W1997828154 @default.
- W3083001031 cites W2008453533 @default.
- W3083001031 cites W2011673871 @default.
- W3083001031 cites W2020250477 @default.
- W3083001031 cites W2020612880 @default.
- W3083001031 cites W2023752957 @default.
- W3083001031 cites W2026501452 @default.
- W3083001031 cites W2029787233 @default.
- W3083001031 cites W2031450075 @default.
- W3083001031 cites W2039515380 @default.
- W3083001031 cites W2048873192 @default.
- W3083001031 cites W2049370904 @default.
- W3083001031 cites W2055702687 @default.
- W3083001031 cites W2064047535 @default.
- W3083001031 cites W2064568067 @default.
- W3083001031 cites W2074334582 @default.
- W3083001031 cites W2074889372 @default.
- W3083001031 cites W2076755830 @default.
- W3083001031 cites W2077938222 @default.
- W3083001031 cites W2078763651 @default.
- W3083001031 cites W2082192018 @default.
- W3083001031 cites W2083397634 @default.
- W3083001031 cites W2090186861 @default.
- W3083001031 cites W2092313028 @default.
- W3083001031 cites W2092937523 @default.
- W3083001031 cites W2094623413 @default.
- W3083001031 cites W2094954623 @default.
- W3083001031 cites W2099504411 @default.
- W3083001031 cites W2099540110 @default.
- W3083001031 cites W2100846239 @default.
- W3083001031 cites W2110743168 @default.
- W3083001031 cites W2110849966 @default.
- W3083001031 cites W2119069530 @default.
- W3083001031 cites W2121133155 @default.
- W3083001031 cites W2125083660 @default.
- W3083001031 cites W2132711651 @default.
- W3083001031 cites W2141301063 @default.
- W3083001031 cites W2142969122 @default.
- W3083001031 cites W2156212191 @default.
- W3083001031 cites W2161800943 @default.
- W3083001031 cites W2163654911 @default.
- W3083001031 cites W2165001245 @default.
- W3083001031 cites W2264216257 @default.
- W3083001031 cites W2265634831 @default.
- W3083001031 cites W2302576218 @default.
- W3083001031 cites W2544162687 @default.
- W3083001031 cites W2553072284 @default.
- W3083001031 cites W2618254771 @default.
- W3083001031 cites W2639489021 @default.
- W3083001031 cites W2730209809 @default.
- W3083001031 cites W2753136175 @default.
- W3083001031 cites W2769077819 @default.
- W3083001031 cites W2789693367 @default.
- W3083001031 cites W2811050337 @default.
- W3083001031 cites W2884385025 @default.
- W3083001031 cites W2907394630 @default.
- W3083001031 cites W2908016405 @default.
- W3083001031 cites W2911545667 @default.
- W3083001031 cites W2912672707 @default.
- W3083001031 cites W2927833223 @default.
- W3083001031 cites W2981789633 @default.
- W3083001031 cites W2988405076 @default.
- W3083001031 cites W2997234496 @default.
- W3083001031 cites W4235902505 @default.
- W3083001031 doi "https://doi.org/10.1016/j.jvolgeores.2020.107044" @default.