Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083004597> ?p ?o ?g. }
- W3083004597 endingPage "601" @default.
- W3083004597 startingPage "579" @default.
- W3083004597 abstract "Purpose The purpose of this paper is to propose a comprehensive version of a hybrid autoregressive integrated moving average (ARIMA), and artificial neural networks (ANNs) in order to yield a more general and more accurate hybrid model for exchange rates forecasting. For this purpose, the Kalman filter technique is used in the proposed model to preprocess and detect the trend of raw data. It is basically done to reduce the existing noise in the underlying data and better modeling, respectively. Design/methodology/approach In this paper, ARIMA models are applied to construct a new hybrid model to overcome the above-mentioned limitations of ANNs and to yield a more general and more accurate model than traditional hybrid ARIMA and ANNs models. In our proposed model, a time series is considered as a function of a linear and nonlinear component, so, in the first phase, an ARIMA model is first used to identify and magnify the existing linear structures in data. In the second phase, a multilayer perceptron is used as a nonlinear neural network to model the preprocessed data, in which the existing linear structures are identified and magnified by ARIMA and to predict the future value of time series. Findings In this paper, a new Kalman filter based hybrid artificial neural network and ARIMA model are proposed as an alternate forecasting technique to the traditional hybrid ARIMA/ANNs models. In the proposed model, similar to the traditional hybrid ARIMA/ANNs models, the unique strengths of ARIMA and ANN in linear and nonlinear modeling are jointly used, aiming to capture different forms of relationship in the data; especially, in complex problems that have both linear and nonlinear correlation structures. However, there are no aforementioned assumptions in the modeling process of the proposed model. Therefore, in the proposed model, in contrast to the traditional hybrid ARIMA/ANNs, it can be generally guaranteed that the performance of the proposed model will not be worse than either of their components used separately. In addition, empirical results in both weekly and daily exchange rate forecasting indicate that the proposed model can be an effective way to improve forecasting accuracy achieved by traditional hybrid ARIMA/ANNs models. Originality/value In the proposed model, in contrast to the traditional hybrid ARIMA/ANNs, it can be guaranteed that the performance of the proposed model will not be worse than either of the components used separately. In addition, empirical results in exchange rate forecasting indicate that the proposed model can be an effective way to improve forecasting accuracy achieved by traditional hybrid ARIMA/ANNs models. Therefore, it can be used as an appropriate alternate model for forecasting in exchange ratemarkets, especially when higher forecasting accuracy is needed." @default.
- W3083004597 created "2020-09-11" @default.
- W3083004597 creator A5005829949 @default.
- W3083004597 creator A5049102333 @default.
- W3083004597 date "2020-09-04" @default.
- W3083004597 modified "2023-10-14" @default.
- W3083004597 title "A Kalman filter-based hybridization model of statistical and intelligent approaches for exchange rate forecasting" @default.
- W3083004597 cites W1069790386 @default.
- W3083004597 cites W1504141014 @default.
- W3083004597 cites W1507895511 @default.
- W3083004597 cites W1513904014 @default.
- W3083004597 cites W1937898554 @default.
- W3083004597 cites W1965279137 @default.
- W3083004597 cites W1968720267 @default.
- W3083004597 cites W1972901431 @default.
- W3083004597 cites W1973003641 @default.
- W3083004597 cites W1974608387 @default.
- W3083004597 cites W1976057029 @default.
- W3083004597 cites W1976611654 @default.
- W3083004597 cites W1977511906 @default.
- W3083004597 cites W1981578880 @default.
- W3083004597 cites W1984755515 @default.
- W3083004597 cites W1986078433 @default.
- W3083004597 cites W1993643085 @default.
- W3083004597 cites W2003466743 @default.
- W3083004597 cites W2008151606 @default.
- W3083004597 cites W2012936212 @default.
- W3083004597 cites W2013619180 @default.
- W3083004597 cites W2015780725 @default.
- W3083004597 cites W2022006693 @default.
- W3083004597 cites W2024230003 @default.
- W3083004597 cites W2027506370 @default.
- W3083004597 cites W2040648670 @default.
- W3083004597 cites W2040998606 @default.
- W3083004597 cites W2043567419 @default.
- W3083004597 cites W2049883449 @default.
- W3083004597 cites W2050527318 @default.
- W3083004597 cites W2057708423 @default.
- W3083004597 cites W2059804518 @default.
- W3083004597 cites W2070181657 @default.
- W3083004597 cites W2073790468 @default.
- W3083004597 cites W2073875037 @default.
- W3083004597 cites W2078107015 @default.
- W3083004597 cites W2082143731 @default.
- W3083004597 cites W2083241800 @default.
- W3083004597 cites W2092436092 @default.
- W3083004597 cites W2111283397 @default.
- W3083004597 cites W2115992261 @default.
- W3083004597 cites W2117014758 @default.
- W3083004597 cites W2123513648 @default.
- W3083004597 cites W2136942720 @default.
- W3083004597 cites W2137634615 @default.
- W3083004597 cites W2140920573 @default.
- W3083004597 cites W2149507038 @default.
- W3083004597 cites W2165909328 @default.
- W3083004597 cites W2167477261 @default.
- W3083004597 cites W222543348 @default.
- W3083004597 cites W2291266225 @default.
- W3083004597 cites W2334014378 @default.
- W3083004597 cites W2407566760 @default.
- W3083004597 cites W2520172106 @default.
- W3083004597 cites W2626514104 @default.
- W3083004597 cites W2736299552 @default.
- W3083004597 cites W2766986120 @default.
- W3083004597 cites W2790130584 @default.
- W3083004597 cites W2805059191 @default.
- W3083004597 cites W2896553871 @default.
- W3083004597 cites W2896579188 @default.
- W3083004597 cites W2911676950 @default.
- W3083004597 cites W3022730781 @default.
- W3083004597 cites W3121155932 @default.
- W3083004597 cites W3123642211 @default.
- W3083004597 cites W3124969352 @default.
- W3083004597 cites W4250639944 @default.
- W3083004597 doi "https://doi.org/10.1108/jm2-12-2019-0277" @default.
- W3083004597 hasPublicationYear "2020" @default.
- W3083004597 type Work @default.
- W3083004597 sameAs 3083004597 @default.
- W3083004597 citedByCount "6" @default.
- W3083004597 countsByYear W30830045972021 @default.
- W3083004597 countsByYear W30830045972022 @default.
- W3083004597 countsByYear W30830045972023 @default.
- W3083004597 crossrefType "journal-article" @default.
- W3083004597 hasAuthorship W3083004597A5005829949 @default.
- W3083004597 hasAuthorship W3083004597A5049102333 @default.
- W3083004597 hasConcept C119857082 @default.
- W3083004597 hasConcept C121332964 @default.
- W3083004597 hasConcept C124101348 @default.
- W3083004597 hasConcept C149782125 @default.
- W3083004597 hasConcept C151406439 @default.
- W3083004597 hasConcept C154945302 @default.
- W3083004597 hasConcept C157286648 @default.
- W3083004597 hasConcept C158622935 @default.
- W3083004597 hasConcept C159877910 @default.
- W3083004597 hasConcept C24338571 @default.
- W3083004597 hasConcept C33923547 @default.
- W3083004597 hasConcept C41008148 @default.
- W3083004597 hasConcept C50644808 @default.