Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083021344> ?p ?o ?g. }
- W3083021344 endingPage "54" @default.
- W3083021344 startingPage "43" @default.
- W3083021344 abstract "Zeroth-order (ZO) optimization is a subset of gradient-free optimization that emerges in many signal processing and machine learning (ML) applications. It is used for solving optimization problems similarly to gradient-based methods. However, it does not require the gradient, using only function evaluations. Specifically, ZO optimization iteratively performs three major steps: gradient estimation, descent direction computation, and the solution update. In this article, we provide a comprehensive review of ZO optimization, with an emphasis on showing the underlying intuition, optimization principles, and recent advances in convergence analysis. Moreover, we demonstrate promising applications of ZO optimization, such as evaluating robustness and generating explanations from black-box deep learning (DL) models and efficient online sensor management." @default.
- W3083021344 created "2020-09-11" @default.
- W3083021344 creator A5002976916 @default.
- W3083021344 creator A5018292481 @default.
- W3083021344 creator A5025337794 @default.
- W3083021344 creator A5041470575 @default.
- W3083021344 creator A5050344371 @default.
- W3083021344 creator A5077692655 @default.
- W3083021344 date "2020-09-01" @default.
- W3083021344 modified "2023-10-03" @default.
- W3083021344 title "A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning: Principals, Recent Advances, and Applications" @default.
- W3083021344 cites W1451881698 @default.
- W3083021344 cites W147998453 @default.
- W3083021344 cites W1541288193 @default.
- W3083021344 cites W1548898283 @default.
- W3083021344 cites W181733065 @default.
- W3083021344 cites W1977655452 @default.
- W3083021344 cites W1985511977 @default.
- W3083021344 cites W1988332918 @default.
- W3083021344 cites W2009797711 @default.
- W3083021344 cites W2029463628 @default.
- W3083021344 cites W2064558818 @default.
- W3083021344 cites W2072690700 @default.
- W3083021344 cites W2108598243 @default.
- W3083021344 cites W2119717200 @default.
- W3083021344 cites W2124289529 @default.
- W3083021344 cites W2137104525 @default.
- W3083021344 cites W2148053762 @default.
- W3083021344 cites W2149479912 @default.
- W3083021344 cites W2160960847 @default.
- W3083021344 cites W2169207653 @default.
- W3083021344 cites W2171074980 @default.
- W3083021344 cites W2171830216 @default.
- W3083021344 cites W2183341477 @default.
- W3083021344 cites W2192203593 @default.
- W3083021344 cites W2248806424 @default.
- W3083021344 cites W2739805727 @default.
- W3083021344 cites W2746600820 @default.
- W3083021344 cites W2772692493 @default.
- W3083021344 cites W2963026800 @default.
- W3083021344 cites W2963411167 @default.
- W3083021344 cites W2963470657 @default.
- W3083021344 cites W2963857521 @default.
- W3083021344 cites W2964205597 @default.
- W3083021344 cites W2964305565 @default.
- W3083021344 cites W2965124356 @default.
- W3083021344 cites W2981892732 @default.
- W3083021344 cites W2993488539 @default.
- W3083021344 cites W2998347911 @default.
- W3083021344 cites W3102143361 @default.
- W3083021344 cites W4205841652 @default.
- W3083021344 cites W4206740629 @default.
- W3083021344 cites W4250589301 @default.
- W3083021344 doi "https://doi.org/10.1109/msp.2020.3003837" @default.
- W3083021344 hasPublicationYear "2020" @default.
- W3083021344 type Work @default.
- W3083021344 sameAs 3083021344 @default.
- W3083021344 citedByCount "46" @default.
- W3083021344 countsByYear W30830213442019 @default.
- W3083021344 countsByYear W30830213442020 @default.
- W3083021344 countsByYear W30830213442021 @default.
- W3083021344 countsByYear W30830213442022 @default.
- W3083021344 countsByYear W30830213442023 @default.
- W3083021344 crossrefType "journal-article" @default.
- W3083021344 hasAuthorship W3083021344A5002976916 @default.
- W3083021344 hasAuthorship W3083021344A5018292481 @default.
- W3083021344 hasAuthorship W3083021344A5025337794 @default.
- W3083021344 hasAuthorship W3083021344A5041470575 @default.
- W3083021344 hasAuthorship W3083021344A5050344371 @default.
- W3083021344 hasAuthorship W3083021344A5077692655 @default.
- W3083021344 hasBestOaLocation W30830213441 @default.
- W3083021344 hasConcept C104267543 @default.
- W3083021344 hasConcept C121332964 @default.
- W3083021344 hasConcept C154945302 @default.
- W3083021344 hasConcept C41008148 @default.
- W3083021344 hasConcept C62520636 @default.
- W3083021344 hasConcept C68755742 @default.
- W3083021344 hasConcept C84462506 @default.
- W3083021344 hasConcept C9390403 @default.
- W3083021344 hasConceptScore W3083021344C104267543 @default.
- W3083021344 hasConceptScore W3083021344C121332964 @default.
- W3083021344 hasConceptScore W3083021344C154945302 @default.
- W3083021344 hasConceptScore W3083021344C41008148 @default.
- W3083021344 hasConceptScore W3083021344C62520636 @default.
- W3083021344 hasConceptScore W3083021344C68755742 @default.
- W3083021344 hasConceptScore W3083021344C84462506 @default.
- W3083021344 hasConceptScore W3083021344C9390403 @default.
- W3083021344 hasFunder F4320306084 @default.
- W3083021344 hasIssue "5" @default.
- W3083021344 hasLocation W30830213441 @default.
- W3083021344 hasOpenAccess W3083021344 @default.
- W3083021344 hasPrimaryLocation W30830213441 @default.
- W3083021344 hasRelatedWork W1601218205 @default.
- W3083021344 hasRelatedWork W1993876517 @default.
- W3083021344 hasRelatedWork W2007277451 @default.
- W3083021344 hasRelatedWork W2055832495 @default.
- W3083021344 hasRelatedWork W2748952813 @default.
- W3083021344 hasRelatedWork W2798687591 @default.