Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083098502> ?p ?o ?g. }
- W3083098502 endingPage "965" @default.
- W3083098502 startingPage "961" @default.
- W3083098502 abstract "No AccessTechnical NotesIncreased Thrust-to-Power Ratio of a Stepped-Diameter Helicon Plasma Thruster with Krypton PropellantKazunori Takahashi, Yoshinori Takao and Akira AndoKazunori TakahashiTohoku University, Sendai 980-8579, Japan*Associate Professor, Principal Investigator, Department of Electrical Engineering; (Corresponding Author).Search for more papers by this author, Yoshinori TakaoYokohama National University, Yokohama 240-8501, Japan†Associate Professor, Division of Systems Research; .Search for more papers by this author and Akira AndoTohoku University, Sendai 980-8579, Japan‡Professor, Department of Electrical Engineering; .Search for more papers by this authorPublished Online:2 Sep 2020https://doi.org/10.2514/1.B37940SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Longmier B. W., Squire J. P., Olsen C. S., Cassady L. D., Ballenger M. G., Carter M. D., Ilin A. V., Glover T. W., McCaskill G. E., Chang Díaz F. R. and Bering E. A., “Improved Efficiency and Throttling Range of the VX-200 Magnetoplasma Thruster,” Journal of Propulsion and Power, Vol. 30, No. 1, 2014, pp. 123–132. https://doi.org/10.2514/1.B34801 LinkGoogle Scholar[2] Charles C., “Plasmas for Spacecraft Propulsion,” Journal of Physics D: Applied Physics, Vol. 42, No. 16, 2009, Paper 163001. https://doi.org/10.1088/0022-3727/42/16/163001 CrossrefGoogle Scholar[3] Takahashi K., “Helicon-Type Radiofrequency Plasma Thrusters and Magnetic Plasma Nozzles,” Reviews of Modern Plasma Physics, Vol. 3, No. 1, 2019, pp. 3-1–3-61. https://doi.org/10.1007/s41614-019-0024-2 Google Scholar[4] Goebel D. M. and Katz I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Wiley, Hoboken, NJ, 2008, Chap. 1. CrossrefGoogle Scholar[5] Charles C., “A Review of Recent Laboratory Double Layer Experiments,” Plasma Sources Science and Technology, Vol. 16, No. 4, 2007, pp. R1–R25. https://doi.org/10.1088/0963-0252/16/4/R01 CrossrefGoogle Scholar[6] Biloiu I. A., Scime E. E. and Biloiu C., “Ion Beam Acceleration in a Divergent Magnetic Field,” Applied Physics Letters, Vol. 92, No. 19, 2008, Paper 191502. https://doi.org/10.1063/1.2927478 Google Scholar[7] Takahashi K., Charles C., Boswell R. W., Kaneko T. and Hatakeyama R., “Measurement of the Energy Distribution of Trapped and Free Electrons in a Current-Free Double Layer,” Physics of Plasmas, Vol. 14, No. 11, 2007, Paper 114503. https://doi.org/10.1063/1.2803763 CrossrefGoogle Scholar[8] Takahashi K., Charles C., Boswell R. W. and Fujiwara T., “Electron Energy Distribution of a Current-Free Double Layer: Druyvesteyn Theory and Experiments,” Physical Review Letters, Vol. 107, No. 3, 2011, Paper 035002. https://doi.org/10.1103/PhysRevLett.107.035002 Google Scholar[9] Fruchtman A., “Electric Field in a Double Layer and the Imparted Momentum,” Physical Review Letters, Vol. 96, No. 6, 2006, Paper 065002. https://doi.org/10.1103/PhysRevLett.96.065002 CrossrefGoogle Scholar[10] Ahedo E. and Merino M., “Two-Dimensional Supersonic Plasma Acceleration in a Magnetic Nozzle,” Physics of Plasmas, Vol. 17, No. 7, 2010, Paper 073501. https://doi.org/10.1063/1.3442736 CrossrefGoogle Scholar[11] Takahashi K., Lafleur T., Charles C., Alexander P. and Boswell R. W., “Axial Force Imparted by a Current-Free Magnetically Expanding Plasma,” Physics of Plasmas, Vol. 19, No. 8, 2012, Paper 083509. https://doi.org/10.1063/1.4747701 CrossrefGoogle Scholar[12] Fruchtman A., Takahashi K., Charles C. and Boswell R. W., “A Magnetic Nozzle Calculation of the Force on a Plasma,” Physics of Plasmas, Vol. 19, No. 3, 2012, Paper 033507. https://doi.org/10.1063/1.3691650 CrossrefGoogle Scholar[13] Hooper E. B., “Plasma Detachment from a Magnetic Nozzle,” Journal of Propulsion and Power, Vol. 9, No. 5, 1993, pp. 757–763. https://doi.org/10.2514/3.23686 LinkGoogle Scholar[14] Schmit P. F. and Fisch N. J., “Magnetic Detachment and Plume Control in Escaping Magnetized Plasma,” Journal of Plasma Physics, Vol. 75, No. 3, 2009, pp. 359–371. https://doi.org/10.1017/S0022377808007666 CrossrefGoogle Scholar[15] Arefiev A. V. and Breizman B. N., “Magnetohydrodynamic Scenario of Plasma Detachment in a Magnetic Nozzle,” Physics of Plasmas, Vol. 12, No. 4, 2005, Paper 043504. https://doi.org/10.1063/1.1875632 CrossrefGoogle Scholar[16] Merino M. and Ahedo E., “Plasma Detachment in a Propulsive Magnetic Nozzle via Ion Demagnetization,” Plasma Sources Science and Technology, Vol. 23, No. 3, 2014, Paper 032001. https://doi.org/10.1088/0963-0252/23/3/032001 Google Scholar[17] Takahashi K. and Ando A., “Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle,” Physical Review Letters, Vol. 118, No. 22, 2017, Paper 225002. https://doi.org/10.1103/PhysRevLett.118.225002 Google Scholar[18] Little J. M. and Choueiri E. Y., “Electron Demagnetization in a Magnetically Expanding Plasma,” Physical Review Letters, Vol. 123, No. 14, 2019, Paper 145001. https://doi.org/10.1103/PhysRevLett.123.145001 Google Scholar[19] Takahashi K., Charles C., Boswell R. W. and Ando A., “Demonstrating a New Technology for Space Debris Removal Using a Bi-Directional Plasma Thruster,” Scientific Reports, Vol. 8, No. 1, 2018, Paper 14417. https://doi.org/10.1038/s41598-018-32697-4 Google Scholar[20] Fruchtman A., “Neutral Depletion in a Collisionless Plasma,” IEEE Transactions on Plasma Science, Vol. 36, No. 2, 2008, pp. 403–413. https://doi.org/10.1109/TPS.2008.918777 CrossrefGoogle Scholar[21] Ahedo E. and Navarro-Cavallé J., “Helicon Thruster Plasma Modeling: Two-Dimensional Fluid-Dynamics and Propulsive Performances,” Physics of Plasmas, Vol. 20, No. 4, 2013, Paper 043512. https://doi.org/10.1063/1.4798409 CrossrefGoogle Scholar[22] Lafleur T., “Helicon Plasma Thruster Discharge Model,” Physics of Plasmas, Vol. 21, No. 4, 2014, Paper 043507. https://doi.org/10.1063/1.4871727 CrossrefGoogle Scholar[23] Takahashi K., Lafleur T., Charles C., Alexander P. and Boswell R. W., “Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory,” Physical Review Letters, Vol. 107, No. 23, 2011, Paper 235001. https://doi.org/10.1103/PhysRevLett.107.235001 CrossrefGoogle Scholar[24] Charles C., Takahashi K. and Boswell R. W., “Axial Force Imparted by a Conical Radiofrequency Magneto-Plasma Thruster,” Applied Physics Letters, Vol. 100, No. 11, 2012, Paper 113504. https://doi.org/10.1063/1.3694281 CrossrefGoogle Scholar[25] Shabshelowitz A. and Gallimore A. D., “Performance and Probe Measurements of a Radio-Frequency Plasma Thruster,” Journal of Propulsion and Power, Vol. 29, No. 4, 2013, pp. 919–929. https://doi.org/10.2514/1.B34720 LinkGoogle Scholar[26] Takahashi K., Lafleur T., Charles C., Alexander P., Boswell R. W., Perren M., Laine R., Pottinger S., Lappas V., Harle T. and Lamprou D., “Direct Thrust Measurement of a Permanent Magnet Helicon Double Layer Thruster,” Applied Physics Letters, Vol. 98, No. 14, 2011, Paper 141503. https://doi.org/10.1063/1.3577608 CrossrefGoogle Scholar[27] Pottinger S., Lappas V., Charles C. and Boswell R., “Performance Characterization of a Helicon Double Layer Thruster Using Direct Thrust Measurements,” Journal of Physics D: Applied Physics, Vol. 44, No. 23, 2011, Paper 235201. https://doi.org/10.1088/0022-3727/44/23/235201 CrossrefGoogle Scholar[28] Batishchev O. V., “Minihelicon Plasma Thruster,” IEEE Transactions on Plasma Science, Vol. 37, No. 8, 2009, pp. 1563–1571. https://doi.org/10.1109/TPS.2009.2023990 CrossrefGoogle Scholar[29] Williams L. T. and Walker M. L. R., “Thrust Measurements of a Radio Frequency Plasma Source,” Journal of Propulsion and Power, Vol. 29, No. 3, 2013, pp. 520–527. https://doi.org/10.2514/1.B34574 LinkGoogle Scholar[30] Harle T., Pottinger S. J. and Lappas V. J., “Helicon Double Layer Thruster Operation in a Low Magnetic Field Mode,” Plasma Sources Science and Technology, Vol. 22, No. 1, 2013, Paper 015015. https://doi.org/10.1088/0963-0252/22/1/015015 Google Scholar[31] Oshio Y., Shimada T. and Nishida H., “Experimental Investigation of Thrust Performance on Position Relationship Between RF Antenna and Magnetic Cusp of RF Plasma Thruster,” Electric Rocket Propulsion Soc. Paper 2017-377, Cambridge, MA, Oct. 2017. Google Scholar[32] Takahashi K., Komuro A. and Ando A., “Effect of Source Diameter on Helicon Plasma Thruster Performance and Its High Power Operation,” Plasma Sources Science and Technology, Vol. 24, No. 5, 2015, Paper 055004. https://doi.org/10.1088/0963-0252/24/5/055004 CrossrefGoogle Scholar[33] Takahashi K., Charles C. and Boswell R. W., “Approaching the Theoretical Limit of Diamagnetic-Induced Momentum in a Rapidly Diverging Magnetic Nozzle,” Physical Review Letters, Vol. 110, No. 19, 2013, Paper 195003. https://doi.org/10.1103/PhysRevLett.110.195003 CrossrefGoogle Scholar[34] Takahashi K., Komuro A. and Ando A., “Operating a Magnetic Nozzle Helicon Thruster with Strong Magnetic Field,” Physics of Plasmas, Vol. 23, No. 3, 2016, Paper 033505. https://doi.org/10.1063/1.4943406 Google Scholar[35] Ling J., West M. D., Lafleur T., Charles C. and Boswell R. W., “Thrust Measurements in a Low-Magnetic Field High-Density Mode in the Helicon Double Layer Thruster,” Journal of Physics D: Applied Physics, Vol. 43, No. 30, 2010, Paper 305203. https://doi.org/10.1088/0022-3727/43/30/305203 Google Scholar[36] Chen F. F., “The Low-Field Density Peak in Helicon Discharges,” Physics of Plasmas, Vol. 10, No. 6, 2003, pp. 2586–2592. https://doi.org/10.1063/1.1575755 Google Scholar[37] Sato G., Oohara W. and Hatakeyama R., “Efficient Plasma Source Providing Pronounced Density Peaks in the Range of Very Low Magnetic Fields,” Applied Physics Letters, Vol. 85, No. 18, 2004, pp. 4007–4009. https://doi.org/10.1063/1.1815071 Google Scholar[38] Takahashi K., Chiba A., Komuro A. and Ando A., “Axial Momentum Lost to a Lateral Wall of a Helicon Plasma Source,” Physical Review Letters, Vol. 114, No. 19, 2015, Paper 195001. https://doi.org/10.1103/PhysRevLett.114.195001 Google Scholar[39] Takahashi K. and Ando A., “Enhancement of Axial Momentum Lost to the Radial Wall by the Upstream Magnetic Field in a Helicon Source,” Plasma Physics and Controlled Fusion, Vol. 59, No. 5, 2017, Paper 054007. https://doi.org/10.1088/1361-6587/aa626f Google Scholar[40] Takahashi K., Takao Y. and Ando A., “Thrust Imparted by a Stepped-Diameter Magnetic Nozzle RF Plasma Thruster,” Applied Physics Letters, Vol. 113, No. 3, 2018, Paper 034101. https://doi.org/10.1063/1.5041034 Google Scholar[41] Takahashi K., Takao Y. and Ando A., “Modifications of Plasma Density Profile and Thrust by Neutral Injection in a Helicon Plasma Thruster,” Applied Physics Letters, Vol. 109, No. 19, 2016, Paper 194101. https://doi.org/10.1063/1.4967193 Google Scholar[42] Takahashi K., Takao Y. and Ando A., “Low-Magnetic-Field Enhancement of Thrust Imparted by a Stepped-Diameter and Downstream-Gas-Injected RF Plasma Thruster,” Plasma Sources Science and Technology, Vol. 28, No. 8, 2019, Paper 085014. https://doi.org/10.1088/1361-6595/ab3100 Google Scholar[43] Siddiqui M. U., Cretel C., Synowiec J., Hsu A. G., Young J. A. and Spektor R., “First Performance Measurements of the Phase Four RF Thruster,” Electric Rocket Propulsion Soc. Paper 2017-431, Cambridge, MA, 2017. Google Scholar[44] Takahashi K., “Radiofrequency Antenna for Suppression of Parasitic Discharges in a Helicon Plasma Thruster Experiment,” Review of Scientific Instruments, Vol. 83, No. 8, 2012, Paper 083508. https://doi.org/10.1063/1.4748271 Google Scholar[45] Chiba A., Takahashi K., Komuro A. and Ando A., “Characterization of Helicon Plasma Thruster Performance Operated for Various Rare Gas Propellants,” Journal of Propulsion and Power, Vol. 31, No. 3, 2015, pp. 962–965. https://doi.org/10.2514/1.B35609 LinkGoogle Scholar[46] Takahashi K., Charles C., Boswell R. and Ando A., “Performance Improvement of a Permanent Magnet Helicon Plasma Thruster,” Journal of Physics D: Applied Physics, Vol. 46, No. 35, 2013, Paper 352001. https://doi.org/10.1088/0022-3727/46/35/352001 CrossrefGoogle Scholar[47] Charles C., Boswell R. and Takahashi K., “Boltzmann Expansion in a Radiofrequency Conical Helicon Thruster Operating in Xenon and Argon,” Applied Physics Letters, Vol. 102, No. 22, 2013, Paper 223510. https://doi.org/10.1063/1.4810001 CrossrefGoogle Scholar[48] Takahashi K., Charles C., Boswell R. and Ando A., “Effect of Magnetic and Physical Nozzles on Plasma Thruster Performance,” Plasma Sources Science and Technology, Vol. 23, No. 4, 2014, Paper 044004. https://doi.org/10.1088/0963-0252/23/4/044004 CrossrefGoogle Scholar[49] Kuwahara D., Shinohara S. and Yano K., “Thrust Characteristics of High-Density Helicon Plasma Using Argon and Xenon Gases,” Journal of Propulsion and Power, Vol. 33, No. 2, 2017, pp. 420–424. https://doi.org/10.2514/1.B36199 LinkGoogle Scholar[50] Trezzolani F., Manente M., Selmo A., Melazzi D., Magarotto M., Moretto D., De Carlo P., Pessana M. and Pavarin D., “Development and Test of a High Power RF Plasma Thruster in Project SAPERE-STRONG,” Electric Rocket Propulsion Soc. Paper 2017-462, Cambridge, MA, 2017. Google Scholar[51] Trezzolani F., Manente M., Toson E., Selmo A., Magarotto M., Moretto D., Bos F., De Carlo P., Melazzi D. and Pavarin D., “Development and Testing of a Miniature Helicon Plasma Thruster,” Electric Rocket Propulsion Soc. Paper 2017-519, Cambridge, MA, 2017. Google Scholar[52] Mazouffre S., “Electric Propulsion for Satellites and Spacecraft: Established Technologies and Novel Approaches,” Plasma Sources Science and Technology, Vol. 25, No. 3, 2016, Paper 033002. https://doi.org/10.1088/0963-0252/25/3/033002 CrossrefGoogle Scholar[53] Caruso N. R. S. and Walker M. L. R., “Effect of Ingested vs. Injected Propellant on Radio-Frequency Discharge Plasma Property,” Frontiers in Physics, Vol. 6, Jan. 2019, pp. 161-1–161-10. https://doi.org/10.3389/fphy.2018.00161 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byThirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster10 November 2022 | Scientific Reports, Vol. 12, No. 1Probe Diagnostics and Optical Emission Spectroscopy of Wave Plasma Source Exhaust22 September 2022 | Symmetry, Vol. 14, No. 10Measurement of plasma flow and electron energy probability function in radio frequency plasma thruster with a magnetic cuspJournal of Applied Physics, Vol. 131, No. 17Development of a novel wave plasma propulsion module with six-directional thrust vectoring capabilityActa Astronautica, Vol. 191Advanced wave plasma thruster with multiple thrust vectoring capabilityAndrei I. Shumeiko, Firas S. Jarrar and Sean S. Swei29 December 2021Plasma properties conditioned by the magnetic throat location in a helicon plasma deviceJournal of Applied Physics, Vol. 130, No. 18Direct experimental comparison of krypton and xenon discharge properties in the magnetic nozzle of a helicon plasma sourcePhysics of Plasmas, Vol. 28, No. 3Electrostatic ion acceleration in an inductive radio-frequency plasma thrusterPhysics of Plasmas, Vol. 27, No. 10 What's Popular Volume 36, Number 6November 2020 CrossmarkInformationCopyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3876 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft EnginesCombustion ChambersElectric PropulsionIon ThrusterJet EnginesNozzlesPropellantPropulsion and PowerRocket EngineRocket PropellantRocketrySpacecraft Propulsion KeywordsMagnetoplasmadynamic ThrusterArgon PropellantThrust to Power RatioMagnetic Field StrengthSolenoidsIon Cyclotron ResonanceGridded Ion ThrusterChamber PressureElectric PropulsionMass Flow RateAcknowledgmentsThis work was partially supported by grant-in-aid for scientific research (Grant Nos. 18K18764 and 19H00663) from the Japan Society for the Promotion of Science and Japan Aerospace Exploration Agency.PDF Received24 December 2019Accepted13 August 2020Published online2 September 2020" @default.
- W3083098502 created "2020-09-11" @default.
- W3083098502 creator A5028070641 @default.
- W3083098502 creator A5057754732 @default.
- W3083098502 creator A5079606283 @default.
- W3083098502 date "2020-11-01" @default.
- W3083098502 modified "2023-10-16" @default.
- W3083098502 title "Increased Thrust-to-Power Ratio of a Stepped-Diameter Helicon Plasma Thruster with Krypton Propellant" @default.
- W3083098502 cites W1974134337 @default.
- W3083098502 cites W1981786226 @default.
- W3083098502 cites W1984081798 @default.
- W3083098502 cites W1987464630 @default.
- W3083098502 cites W1994987635 @default.
- W3083098502 cites W1995234790 @default.
- W3083098502 cites W1999982908 @default.
- W3083098502 cites W2016567461 @default.
- W3083098502 cites W2020011817 @default.
- W3083098502 cites W2021001247 @default.
- W3083098502 cites W2024937341 @default.
- W3083098502 cites W2031632216 @default.
- W3083098502 cites W2032144817 @default.
- W3083098502 cites W2042939027 @default.
- W3083098502 cites W2044168149 @default.
- W3083098502 cites W2052394852 @default.
- W3083098502 cites W2059265376 @default.
- W3083098502 cites W2062360733 @default.
- W3083098502 cites W2069886196 @default.
- W3083098502 cites W2072320817 @default.
- W3083098502 cites W2077929280 @default.
- W3083098502 cites W2082313699 @default.
- W3083098502 cites W2084122994 @default.
- W3083098502 cites W2085872831 @default.
- W3083098502 cites W2097889346 @default.
- W3083098502 cites W2099848038 @default.
- W3083098502 cites W2104391503 @default.
- W3083098502 cites W2118834853 @default.
- W3083098502 cites W2120811836 @default.
- W3083098502 cites W2124078096 @default.
- W3083098502 cites W2140876053 @default.
- W3083098502 cites W2145800874 @default.
- W3083098502 cites W2154209078 @default.
- W3083098502 cites W2159609833 @default.
- W3083098502 cites W2167109539 @default.
- W3083098502 cites W2295000287 @default.
- W3083098502 cites W2332244951 @default.
- W3083098502 cites W2466944957 @default.
- W3083098502 cites W2519079384 @default.
- W3083098502 cites W2554216120 @default.
- W3083098502 cites W2603414687 @default.
- W3083098502 cites W2620938279 @default.
- W3083098502 cites W2884973697 @default.
- W3083098502 cites W2947176385 @default.
- W3083098502 cites W2959837515 @default.
- W3083098502 cites W2978133815 @default.
- W3083098502 cites W429626240 @default.
- W3083098502 doi "https://doi.org/10.2514/1.b37940" @default.
- W3083098502 hasPublicationYear "2020" @default.
- W3083098502 type Work @default.
- W3083098502 sameAs 3083098502 @default.
- W3083098502 citedByCount "10" @default.
- W3083098502 countsByYear W30830985022020 @default.
- W3083098502 countsByYear W30830985022021 @default.
- W3083098502 countsByYear W30830985022022 @default.
- W3083098502 countsByYear W30830985022023 @default.
- W3083098502 crossrefType "journal-article" @default.
- W3083098502 hasAuthorship W3083098502A5028070641 @default.
- W3083098502 hasAuthorship W3083098502A5057754732 @default.
- W3083098502 hasAuthorship W3083098502A5079606283 @default.
- W3083098502 hasConcept C1034443 @default.
- W3083098502 hasConcept C121332964 @default.
- W3083098502 hasConcept C127413603 @default.
- W3083098502 hasConcept C146978453 @default.
- W3083098502 hasConcept C15046436 @default.
- W3083098502 hasConcept C163258240 @default.
- W3083098502 hasConcept C163368183 @default.
- W3083098502 hasConcept C165850701 @default.
- W3083098502 hasConcept C184779094 @default.
- W3083098502 hasConcept C185544564 @default.
- W3083098502 hasConcept C192562407 @default.
- W3083098502 hasConcept C2779123320 @default.
- W3083098502 hasConcept C521692839 @default.
- W3083098502 hasConcept C548442186 @default.
- W3083098502 hasConcept C57879066 @default.
- W3083098502 hasConcept C76737569 @default.
- W3083098502 hasConcept C79420006 @default.
- W3083098502 hasConcept C82706917 @default.
- W3083098502 hasConcept C97355855 @default.
- W3083098502 hasConceptScore W3083098502C1034443 @default.
- W3083098502 hasConceptScore W3083098502C121332964 @default.
- W3083098502 hasConceptScore W3083098502C127413603 @default.
- W3083098502 hasConceptScore W3083098502C146978453 @default.
- W3083098502 hasConceptScore W3083098502C15046436 @default.
- W3083098502 hasConceptScore W3083098502C163258240 @default.
- W3083098502 hasConceptScore W3083098502C163368183 @default.
- W3083098502 hasConceptScore W3083098502C165850701 @default.
- W3083098502 hasConceptScore W3083098502C184779094 @default.
- W3083098502 hasConceptScore W3083098502C185544564 @default.
- W3083098502 hasConceptScore W3083098502C192562407 @default.