Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083149714> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3083149714 endingPage "162981" @default.
- W3083149714 startingPage "162973" @default.
- W3083149714 abstract "Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training. Since there are more unlabeled data than labeled ones in most of medical applications, self-supervised learning has been utilized to improve the performance. However, most of current methods for self-supervised learning try to understand only semantic features of the data, but have not fully utilized properties inherent in medical images. Specifically, in CT or MR images, the spatial or structural information contained in the dataset has not been fully considered. In this paper, we propose a novel method for self-supervised learning in medical image analysis that can exploit both semantic and spatial features at the same time. The proposed method is experimented in the problems of organ segmentation, intracranial hemorrhage detection and the results show the effectiveness of the method." @default.
- W3083149714 created "2020-09-11" @default.
- W3083149714 creator A5056200160 @default.
- W3083149714 creator A5073273395 @default.
- W3083149714 creator A5074107461 @default.
- W3083149714 creator A5082933795 @default.
- W3083149714 date "2020-01-01" @default.
- W3083149714 modified "2023-10-12" @default.
- W3083149714 title "Self-Supervised Learning Based on Spatial Awareness for Medical Image Analysis" @default.
- W3083149714 cites W1536680647 @default.
- W3083149714 cites W1903029394 @default.
- W3083149714 cites W2097117768 @default.
- W3083149714 cites W2102605133 @default.
- W3083149714 cites W2108598243 @default.
- W3083149714 cites W2194775991 @default.
- W3083149714 cites W2326925005 @default.
- W3083149714 cites W2412782625 @default.
- W3083149714 cites W2518754566 @default.
- W3083149714 cites W2560023338 @default.
- W3083149714 cites W2619697695 @default.
- W3083149714 cites W2768591600 @default.
- W3083149714 cites W2795912842 @default.
- W3083149714 cites W2888101838 @default.
- W3083149714 cites W2962793481 @default.
- W3083149714 cites W2963092440 @default.
- W3083149714 cites W2963420272 @default.
- W3083149714 cites W2963446712 @default.
- W3083149714 cites W2963465221 @default.
- W3083149714 cites W2963470893 @default.
- W3083149714 cites W2963587345 @default.
- W3083149714 cites W2963826423 @default.
- W3083149714 cites W2964037671 @default.
- W3083149714 cites W2964060161 @default.
- W3083149714 cites W2964744899 @default.
- W3083149714 cites W3023371261 @default.
- W3083149714 cites W343636949 @default.
- W3083149714 doi "https://doi.org/10.1109/access.2020.3021469" @default.
- W3083149714 hasPublicationYear "2020" @default.
- W3083149714 type Work @default.
- W3083149714 sameAs 3083149714 @default.
- W3083149714 citedByCount "17" @default.
- W3083149714 countsByYear W30831497142021 @default.
- W3083149714 countsByYear W30831497142022 @default.
- W3083149714 countsByYear W30831497142023 @default.
- W3083149714 crossrefType "journal-article" @default.
- W3083149714 hasAuthorship W3083149714A5056200160 @default.
- W3083149714 hasAuthorship W3083149714A5073273395 @default.
- W3083149714 hasAuthorship W3083149714A5074107461 @default.
- W3083149714 hasAuthorship W3083149714A5082933795 @default.
- W3083149714 hasBestOaLocation W30831497141 @default.
- W3083149714 hasConcept C115961682 @default.
- W3083149714 hasConcept C119857082 @default.
- W3083149714 hasConcept C124504099 @default.
- W3083149714 hasConcept C153180895 @default.
- W3083149714 hasConcept C154945302 @default.
- W3083149714 hasConcept C31972630 @default.
- W3083149714 hasConcept C41008148 @default.
- W3083149714 hasConceptScore W3083149714C115961682 @default.
- W3083149714 hasConceptScore W3083149714C119857082 @default.
- W3083149714 hasConceptScore W3083149714C124504099 @default.
- W3083149714 hasConceptScore W3083149714C153180895 @default.
- W3083149714 hasConceptScore W3083149714C154945302 @default.
- W3083149714 hasConceptScore W3083149714C31972630 @default.
- W3083149714 hasConceptScore W3083149714C41008148 @default.
- W3083149714 hasFunder F4320320671 @default.
- W3083149714 hasFunder F4320322120 @default.
- W3083149714 hasLocation W30831497141 @default.
- W3083149714 hasOpenAccess W3083149714 @default.
- W3083149714 hasPrimaryLocation W30831497141 @default.
- W3083149714 hasRelatedWork W1485614034 @default.
- W3083149714 hasRelatedWork W1960899470 @default.
- W3083149714 hasRelatedWork W2005185696 @default.
- W3083149714 hasRelatedWork W2044548884 @default.
- W3083149714 hasRelatedWork W2183661703 @default.
- W3083149714 hasRelatedWork W2212329603 @default.
- W3083149714 hasRelatedWork W2536634271 @default.
- W3083149714 hasRelatedWork W2566648451 @default.
- W3083149714 hasRelatedWork W2785932105 @default.
- W3083149714 hasRelatedWork W404332504 @default.
- W3083149714 hasVolume "8" @default.
- W3083149714 isParatext "false" @default.
- W3083149714 isRetracted "false" @default.
- W3083149714 magId "3083149714" @default.
- W3083149714 workType "article" @default.