Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083174013> ?p ?o ?g. }
- W3083174013 endingPage "125509" @default.
- W3083174013 startingPage "125509" @default.
- W3083174013 abstract "Accurate prediction of reference evapotranspiration (ET0) is essential for efficient planning and management of limited water resources through proper irrigation scheduling. The FAO-56 Penman-Monteith approach to ET0 estimation was adopted to compute ET0 from data obtained in a subtropical climatic region in Bangladesh. Quantified ET0 values along with the meteorological variables for two other Stations located in south Florida, USA, were directly obtained from the USGS website. A commonly used machine learning algorithm, Adaptive Neuro Fuzzy Inference System (ANFIS), was employed to predict daily ET0 using regional meteorological data (e.g., daily maximum and minimum air temperatures, wind speed, relative humidity, sensible heat flux, latent heat and sunshine duration). Four optimization algorithms were employed to tune ANFIS, resulting in hybrid models: Biogeography-based Optimization (BBO-ANFIS), Firefly Algorithm (FA-ANFIS), Particle Swarm Optimization (PSO-ANFIS), and Teaching-Learning-based Optimization (TLBO-ANFIS). These models’ performances were compared with the standard ANFIS model with parameters tuned using an Integrated Least Squares and Backpropagation Gradient Descent (LSGD) algorithm. Decision theories were applied to assess the accuracy of the predictions as well as to rank prediction models based on eight statistical indices. Results indicated that FA-ANFIS resulted in the most accurate ET0 predictions. In the next stage, ensembles of these prediction models were compared to determine whether the ensemble models resulted in more reliable predictions than the standalone models. To develop each ensemble, three decision theories were applied: Shannon’s Entropy, Coefficient of Variation, and Grey Relational Analysis. All three ensemble approaches provided similar results, showing ensemble prediction methods to perform better than most individual models." @default.
- W3083174013 created "2020-09-11" @default.
- W3083174013 creator A5015639176 @default.
- W3083174013 creator A5063993849 @default.
- W3083174013 creator A5084460034 @default.
- W3083174013 creator A5087688538 @default.
- W3083174013 date "2020-12-01" @default.
- W3083174013 modified "2023-10-14" @default.
- W3083174013 title "Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones" @default.
- W3083174013 cites W1123274752 @default.
- W3083174013 cites W1969336359 @default.
- W3083174013 cites W1971371955 @default.
- W3083174013 cites W1972641521 @default.
- W3083174013 cites W1978128908 @default.
- W3083174013 cites W1982506807 @default.
- W3083174013 cites W1990471334 @default.
- W3083174013 cites W1992656882 @default.
- W3083174013 cites W1994791976 @default.
- W3083174013 cites W1995450389 @default.
- W3083174013 cites W1996878377 @default.
- W3083174013 cites W2004415796 @default.
- W3083174013 cites W2010778044 @default.
- W3083174013 cites W2013377700 @default.
- W3083174013 cites W2014264352 @default.
- W3083174013 cites W2016210396 @default.
- W3083174013 cites W2019207321 @default.
- W3083174013 cites W2020093619 @default.
- W3083174013 cites W2021432630 @default.
- W3083174013 cites W2024069451 @default.
- W3083174013 cites W2030895949 @default.
- W3083174013 cites W2033904036 @default.
- W3083174013 cites W2037656125 @default.
- W3083174013 cites W2062174566 @default.
- W3083174013 cites W2062631119 @default.
- W3083174013 cites W2069911320 @default.
- W3083174013 cites W2075604548 @default.
- W3083174013 cites W2079325629 @default.
- W3083174013 cites W2088990166 @default.
- W3083174013 cites W2089342818 @default.
- W3083174013 cites W2134710136 @default.
- W3083174013 cites W2138763184 @default.
- W3083174013 cites W2146492175 @default.
- W3083174013 cites W2152195021 @default.
- W3083174013 cites W2154943049 @default.
- W3083174013 cites W2159265133 @default.
- W3083174013 cites W2167493478 @default.
- W3083174013 cites W2168081761 @default.
- W3083174013 cites W2168087114 @default.
- W3083174013 cites W2171675708 @default.
- W3083174013 cites W2255781275 @default.
- W3083174013 cites W2290684944 @default.
- W3083174013 cites W2296778215 @default.
- W3083174013 cites W2565672080 @default.
- W3083174013 cites W2603417106 @default.
- W3083174013 cites W2749106749 @default.
- W3083174013 cites W2755773393 @default.
- W3083174013 cites W2769592583 @default.
- W3083174013 cites W2770030938 @default.
- W3083174013 cites W2792263887 @default.
- W3083174013 cites W2808724894 @default.
- W3083174013 cites W2907891425 @default.
- W3083174013 cites W2908827354 @default.
- W3083174013 cites W2914010233 @default.
- W3083174013 cites W2920797498 @default.
- W3083174013 cites W2921467030 @default.
- W3083174013 cites W2942851257 @default.
- W3083174013 cites W2944755434 @default.
- W3083174013 cites W2947179124 @default.
- W3083174013 cites W2951791429 @default.
- W3083174013 cites W2957731227 @default.
- W3083174013 cites W2964253828 @default.
- W3083174013 cites W2972445383 @default.
- W3083174013 cites W3030161846 @default.
- W3083174013 cites W332085899 @default.
- W3083174013 cites W4308067211 @default.
- W3083174013 doi "https://doi.org/10.1016/j.jhydrol.2020.125509" @default.
- W3083174013 hasPublicationYear "2020" @default.
- W3083174013 type Work @default.
- W3083174013 sameAs 3083174013 @default.
- W3083174013 citedByCount "41" @default.
- W3083174013 countsByYear W30831740132021 @default.
- W3083174013 countsByYear W30831740132022 @default.
- W3083174013 countsByYear W30831740132023 @default.
- W3083174013 crossrefType "journal-article" @default.
- W3083174013 hasAuthorship W3083174013A5015639176 @default.
- W3083174013 hasAuthorship W3083174013A5063993849 @default.
- W3083174013 hasAuthorship W3083174013A5084460034 @default.
- W3083174013 hasAuthorship W3083174013A5087688538 @default.
- W3083174013 hasConcept C11413529 @default.
- W3083174013 hasConcept C119857082 @default.
- W3083174013 hasConcept C124101348 @default.
- W3083174013 hasConcept C154945302 @default.
- W3083174013 hasConcept C176783924 @default.
- W3083174013 hasConcept C186108316 @default.
- W3083174013 hasConcept C18903297 @default.
- W3083174013 hasConcept C195975749 @default.
- W3083174013 hasConcept C39432304 @default.
- W3083174013 hasConcept C41008148 @default.