Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083231068> ?p ?o ?g. }
- W3083231068 abstract "Automated computational analysis techniques utilizing machine learning have been demonstrated to be able to extract more data from different imaging modalities compared to traditional analysis techniques. One new approach is to use machine learning techniques to existing multiphoton imaging modalities to better interpret intrinsically fluorescent cellular signals to characterize different cell types. Fluorescence Lifetime Imaging Microscopy (FLIM) is a high-resolution quantitative imaging tool that can detect metabolic cellular signatures based on the lifetime variations of intrinsically fluorescent metabolic co-factors such as nicotinamide adenine dinucleotide [NAD(P)H]. NAD(P)H lifetime-based discrimination techniques have previously been used to develop metabolic cell signatures for diverse cell types including immune cells such as macrophages. However, FLIM could be even more effective in characterizing cell types if machine learning was used to classify cells by utilizing FLIM parameters for classification. Here, we demonstrate the potential for FLIM-based, label-free NAD(P)H imaging to distinguish different cell types using Artificial Neural Network (ANN)-based machine learning. For our biological use case, we used the challenge of differentiating microglia from other glia cell types in the brain. Microglia are the resident macrophages of the brain and spinal cord and play a critical role in maintaining the neural environment and responding to injury. Microglia are challenging to identify as most fluorescent labeling approaches cross-react with other immune cell types, are often insensitive to activation state, and require the use of multiple specialized antibody labels. Furthermore, the use of these extrinsic antibody labels prevents application in in vivo animal models and possible future clinical adaptations such as neurodegenerative pathologies. With the ANN-based NAD(P)H FLIM analysis approach, we found that microglia in cell culture mixed with other glial cells can be identified with more than 0.9 True Positive Rate (TPR). We also extended our approach to identify microglia in fixed brain tissue with a TPR of 0.79. In both cases the False Discovery Rate was around 30%. This method can be further extended to potentially study and better understand microglia's role in neurodegenerative disease with improved detection accuracy." @default.
- W3083231068 created "2020-09-11" @default.
- W3083231068 creator A5010413374 @default.
- W3083231068 creator A5023825086 @default.
- W3083231068 creator A5050551990 @default.
- W3083231068 creator A5053874663 @default.
- W3083231068 creator A5057565470 @default.
- W3083231068 creator A5070760928 @default.
- W3083231068 date "2020-09-03" @default.
- W3083231068 modified "2023-10-12" @default.
- W3083231068 title "Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia" @default.
- W3083231068 cites W1830916283 @default.
- W3083231068 cites W1967487532 @default.
- W3083231068 cites W1986163455 @default.
- W3083231068 cites W1995783329 @default.
- W3083231068 cites W1997439525 @default.
- W3083231068 cites W2015072959 @default.
- W3083231068 cites W2026883019 @default.
- W3083231068 cites W2031502025 @default.
- W3083231068 cites W2031671747 @default.
- W3083231068 cites W2034157682 @default.
- W3083231068 cites W2038438278 @default.
- W3083231068 cites W2046166661 @default.
- W3083231068 cites W2061464631 @default.
- W3083231068 cites W2063827358 @default.
- W3083231068 cites W2085446806 @default.
- W3083231068 cites W2088341766 @default.
- W3083231068 cites W2100392590 @default.
- W3083231068 cites W2107093743 @default.
- W3083231068 cites W2111920179 @default.
- W3083231068 cites W2115318086 @default.
- W3083231068 cites W2135174215 @default.
- W3083231068 cites W2154939445 @default.
- W3083231068 cites W2156059455 @default.
- W3083231068 cites W2166168429 @default.
- W3083231068 cites W2171992932 @default.
- W3083231068 cites W2280077905 @default.
- W3083231068 cites W2285031911 @default.
- W3083231068 cites W2305213932 @default.
- W3083231068 cites W2337277441 @default.
- W3083231068 cites W2345992902 @default.
- W3083231068 cites W2406448959 @default.
- W3083231068 cites W2604318464 @default.
- W3083231068 cites W2606602047 @default.
- W3083231068 cites W2611805996 @default.
- W3083231068 cites W2626923116 @default.
- W3083231068 cites W2976700891 @default.
- W3083231068 cites W2985938182 @default.
- W3083231068 cites W3006263131 @default.
- W3083231068 cites W4211107382 @default.
- W3083231068 cites W4256669726 @default.
- W3083231068 cites W4376596128 @default.
- W3083231068 cites W824539460 @default.
- W3083231068 doi "https://doi.org/10.3389/fnins.2020.00931" @default.
- W3083231068 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7497798" @default.
- W3083231068 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33013309" @default.
- W3083231068 hasPublicationYear "2020" @default.
- W3083231068 type Work @default.
- W3083231068 sameAs 3083231068 @default.
- W3083231068 citedByCount "15" @default.
- W3083231068 countsByYear W30832310682021 @default.
- W3083231068 countsByYear W30832310682022 @default.
- W3083231068 countsByYear W30832310682023 @default.
- W3083231068 crossrefType "journal-article" @default.
- W3083231068 hasAuthorship W3083231068A5010413374 @default.
- W3083231068 hasAuthorship W3083231068A5023825086 @default.
- W3083231068 hasAuthorship W3083231068A5050551990 @default.
- W3083231068 hasAuthorship W3083231068A5053874663 @default.
- W3083231068 hasAuthorship W3083231068A5057565470 @default.
- W3083231068 hasAuthorship W3083231068A5070760928 @default.
- W3083231068 hasBestOaLocation W30832310681 @default.
- W3083231068 hasConcept C121332964 @default.
- W3083231068 hasConcept C1491633281 @default.
- W3083231068 hasConcept C154945302 @default.
- W3083231068 hasConcept C169760540 @default.
- W3083231068 hasConcept C181199279 @default.
- W3083231068 hasConcept C185592680 @default.
- W3083231068 hasConcept C189014844 @default.
- W3083231068 hasConcept C203014093 @default.
- W3083231068 hasConcept C2776901170 @default.
- W3083231068 hasConcept C2776914184 @default.
- W3083231068 hasConcept C2779830541 @default.
- W3083231068 hasConcept C41008148 @default.
- W3083231068 hasConcept C55493867 @default.
- W3083231068 hasConcept C57477423 @default.
- W3083231068 hasConcept C62520636 @default.
- W3083231068 hasConcept C75520062 @default.
- W3083231068 hasConcept C86803240 @default.
- W3083231068 hasConcept C91881484 @default.
- W3083231068 hasConceptScore W3083231068C121332964 @default.
- W3083231068 hasConceptScore W3083231068C1491633281 @default.
- W3083231068 hasConceptScore W3083231068C154945302 @default.
- W3083231068 hasConceptScore W3083231068C169760540 @default.
- W3083231068 hasConceptScore W3083231068C181199279 @default.
- W3083231068 hasConceptScore W3083231068C185592680 @default.
- W3083231068 hasConceptScore W3083231068C189014844 @default.
- W3083231068 hasConceptScore W3083231068C203014093 @default.
- W3083231068 hasConceptScore W3083231068C2776901170 @default.
- W3083231068 hasConceptScore W3083231068C2776914184 @default.
- W3083231068 hasConceptScore W3083231068C2779830541 @default.