Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083244927> ?p ?o ?g. }
- W3083244927 abstract "During the COVID-19 pandemic, there has been an emerging need for rapid, dedicated, and point-of-care COVID-19 patient disposition techniques to optimize resource utilization and clinical workflow. In view of this need, we present COVID-MobileXpert: a lightweight deep neural network (DNN) based mobile app that can use chest X-ray (CXR) for COVID-19 case screening and radiological trajectory prediction. We design and implement a novel three-player knowledge transfer and distillation (KTD) framework including a pre-trained attending physician (AP) network that extracts CXR imaging features from a large scale of lung disease CXR images, a fine-tuned resident fellow (RF) network that learns the essential CXR imaging features to discriminate COVID-19 from pneumonia and/or normal cases with a small amount of COVID-19 cases, and a trained lightweight medical student (MS) network to perform on-device COVID-19 patient triage and follow-up. To tackle the challenge of vastly similar and dominant fore- and background in medical images, we employ novel loss functions and training schemes for the MS network to learn the robust features. We demonstrate the significant potential of COVID-MobileXpert for rapid deployment via extensive experiments with diverse MS architecture and tuning parameter settings. The source codes for cloud and mobile based models are available from the following url: https://github.com/xinli0928/COVID-Xray." @default.
- W3083244927 created "2020-09-11" @default.
- W3083244927 creator A5009256505 @default.
- W3083244927 creator A5014432190 @default.
- W3083244927 creator A5022526821 @default.
- W3083244927 date "2020-04-06" @default.
- W3083244927 modified "2023-10-18" @default.
- W3083244927 title "COVID-MobileXpert: On-Device COVID-19 Patient Triage and Follow-up using Chest X-rays" @default.
- W3083244927 cites W1821462560 @default.
- W3083244927 cites W2108598243 @default.
- W3083244927 cites W2187089797 @default.
- W3083244927 cites W2191167248 @default.
- W3083244927 cites W2253429366 @default.
- W3083244927 cites W2279098554 @default.
- W3083244927 cites W2300242332 @default.
- W3083244927 cites W2608231518 @default.
- W3083244927 cites W2770241596 @default.
- W3083244927 cites W2776565386 @default.
- W3083244927 cites W2785934082 @default.
- W3083244927 cites W2799197246 @default.
- W3083244927 cites W2803124023 @default.
- W3083244927 cites W2885311373 @default.
- W3083244927 cites W2886327376 @default.
- W3083244927 cites W2889797931 @default.
- W3083244927 cites W2938458886 @default.
- W3083244927 cites W2945289329 @default.
- W3083244927 cites W2963125010 @default.
- W3083244927 cites W2963163009 @default.
- W3083244927 cites W2963168174 @default.
- W3083244927 cites W2963446712 @default.
- W3083244927 cites W2963739978 @default.
- W3083244927 cites W2963918968 @default.
- W3083244927 cites W2963993763 @default.
- W3083244927 cites W2964161024 @default.
- W3083244927 cites W2964299589 @default.
- W3083244927 cites W2969985801 @default.
- W3083244927 cites W2982083293 @default.
- W3083244927 cites W2988396473 @default.
- W3083244927 cites W2994955197 @default.
- W3083244927 cites W3004392938 @default.
- W3083244927 cites W3005867326 @default.
- W3083244927 cites W3006792870 @default.
- W3083244927 cites W3009885589 @default.
- W3083244927 cites W3010381061 @default.
- W3083244927 cites W3010604545 @default.
- W3083244927 cites W3013042142 @default.
- W3083244927 cites W3013130152 @default.
- W3083244927 cites W3013277995 @default.
- W3083244927 cites W3013515352 @default.
- W3083244927 cites W3013564598 @default.
- W3083244927 cites W3013601031 @default.
- W3083244927 cites W3013633552 @default.
- W3083244927 cites W3013881554 @default.
- W3083244927 cites W3014151993 @default.
- W3083244927 cites W3014159788 @default.
- W3083244927 cites W3014387504 @default.
- W3083244927 cites W3015130244 @default.
- W3083244927 cites W3017823544 @default.
- W3083244927 cites W3023750470 @default.
- W3083244927 cites W3023769517 @default.
- W3083244927 cites W3027380610 @default.
- W3083244927 cites W3033586327 @default.
- W3083244927 cites W3037810051 @default.
- W3083244927 cites W3045625006 @default.
- W3083244927 cites W3099502074 @default.
- W3083244927 cites W3101156210 @default.
- W3083244927 cites W3105081694 @default.
- W3083244927 cites W3114166611 @default.
- W3083244927 cites W3129576291 @default.
- W3083244927 cites W3162351260 @default.
- W3083244927 cites W2983872911 @default.
- W3083244927 doi "https://doi.org/10.48550/arxiv.2004.03042" @default.
- W3083244927 hasPublicationYear "2020" @default.
- W3083244927 type Work @default.
- W3083244927 sameAs 3083244927 @default.
- W3083244927 citedByCount "12" @default.
- W3083244927 countsByYear W30832449272020 @default.
- W3083244927 countsByYear W30832449272021 @default.
- W3083244927 countsByYear W30832449272022 @default.
- W3083244927 countsByYear W30832449272023 @default.
- W3083244927 crossrefType "posted-content" @default.
- W3083244927 hasAuthorship W3083244927A5009256505 @default.
- W3083244927 hasAuthorship W3083244927A5014432190 @default.
- W3083244927 hasAuthorship W3083244927A5022526821 @default.
- W3083244927 hasBestOaLocation W30832449271 @default.
- W3083244927 hasConcept C105339364 @default.
- W3083244927 hasConcept C108583219 @default.
- W3083244927 hasConcept C111919701 @default.
- W3083244927 hasConcept C142724271 @default.
- W3083244927 hasConcept C154945302 @default.
- W3083244927 hasConcept C177212765 @default.
- W3083244927 hasConcept C186967261 @default.
- W3083244927 hasConcept C2777120189 @default.
- W3083244927 hasConcept C2779134260 @default.
- W3083244927 hasConcept C3008058167 @default.
- W3083244927 hasConcept C41008148 @default.
- W3083244927 hasConcept C524204448 @default.
- W3083244927 hasConcept C545542383 @default.
- W3083244927 hasConcept C71924100 @default.
- W3083244927 hasConcept C77088390 @default.