Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083294927> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3083294927 abstract "Quantum-inspired Evolutionary Algorithms (QiEAs) have demonstrated to be very effective in several applications. In particular, employing this algorithm for feature selection as a wrapper technique in Brain-Computer Interfaces applications was recently proposed with great results. Moreover, the training time of the model was decreased while maintaining a high classification accuracy, both essential conditions for a successful BCI. The drawback of this model was the sensitiveness to changes in the direction and magnitude of the rotation angle, which can produce adverse effects in both performance and convergence time. Chaotic systems and Evolutionary algorithms, when combined, can enhance the convergence rate and speed of the evolutionary process, incrementing the capacity of reaching the global optima. In this paper we explore the effects of adding ergodicity to a QiEA by the employment of chaotic maps in two operators: chaotic uniform crossover and chaotic quantum update gate. To validate the proposed approach, six commonly used chaotic maps are tested with data of Motor Imagery (MI) Electroencephalography (EEG) of right and left hand movement. The results of these experiments are compared with the ones of a QiEA and a classical Genetic Algorithm (GA). In the proposed model, Wavelet Packet Decomposition is employed as the time-frequency analysis to characterize the signal, whereas a Multilayer Perceptron Neural Network is used as a classifier. The results demonstrated that Chaotic QiEAs can significantly improve the convergence time of the model with only a small loss in the final accuracy." @default.
- W3083294927 created "2020-09-11" @default.
- W3083294927 creator A5042804886 @default.
- W3083294927 creator A5085598532 @default.
- W3083294927 date "2020-07-01" @default.
- W3083294927 modified "2023-10-18" @default.
- W3083294927 title "Chaotic Quantum-inspired Evolutionary Algorithm: enhancing feature selection in BCI" @default.
- W3083294927 cites W2003312239 @default.
- W3083294927 cites W2005791255 @default.
- W3083294927 cites W2008742843 @default.
- W3083294927 cites W2018229832 @default.
- W3083294927 cites W2028373980 @default.
- W3083294927 cites W2039930961 @default.
- W3083294927 cites W2058979950 @default.
- W3083294927 cites W2069910513 @default.
- W3083294927 cites W2096189745 @default.
- W3083294927 cites W2102265997 @default.
- W3083294927 cites W2106231951 @default.
- W3083294927 cites W2122274805 @default.
- W3083294927 cites W2126427945 @default.
- W3083294927 cites W2136885049 @default.
- W3083294927 cites W2158573165 @default.
- W3083294927 cites W2169747626 @default.
- W3083294927 cites W2270498221 @default.
- W3083294927 cites W2502380527 @default.
- W3083294927 cites W2570355113 @default.
- W3083294927 cites W2609220535 @default.
- W3083294927 cites W2794345050 @default.
- W3083294927 cites W2897159037 @default.
- W3083294927 cites W2897227884 @default.
- W3083294927 cites W2914452308 @default.
- W3083294927 cites W2955983325 @default.
- W3083294927 cites W3147389599 @default.
- W3083294927 cites W2977509458 @default.
- W3083294927 doi "https://doi.org/10.1109/cec48606.2020.9185608" @default.
- W3083294927 hasPublicationYear "2020" @default.
- W3083294927 type Work @default.
- W3083294927 sameAs 3083294927 @default.
- W3083294927 citedByCount "3" @default.
- W3083294927 countsByYear W30832949272021 @default.
- W3083294927 countsByYear W30832949272022 @default.
- W3083294927 crossrefType "proceedings-article" @default.
- W3083294927 hasAuthorship W3083294927A5042804886 @default.
- W3083294927 hasAuthorship W3083294927A5085598532 @default.
- W3083294927 hasConcept C11413529 @default.
- W3083294927 hasConcept C118552586 @default.
- W3083294927 hasConcept C122507166 @default.
- W3083294927 hasConcept C154945302 @default.
- W3083294927 hasConcept C15744967 @default.
- W3083294927 hasConcept C159149176 @default.
- W3083294927 hasConcept C162324750 @default.
- W3083294927 hasConcept C173201364 @default.
- W3083294927 hasConcept C2777052490 @default.
- W3083294927 hasConcept C2777303404 @default.
- W3083294927 hasConcept C41008148 @default.
- W3083294927 hasConcept C50522688 @default.
- W3083294927 hasConcept C522805319 @default.
- W3083294927 hasConceptScore W3083294927C11413529 @default.
- W3083294927 hasConceptScore W3083294927C118552586 @default.
- W3083294927 hasConceptScore W3083294927C122507166 @default.
- W3083294927 hasConceptScore W3083294927C154945302 @default.
- W3083294927 hasConceptScore W3083294927C15744967 @default.
- W3083294927 hasConceptScore W3083294927C159149176 @default.
- W3083294927 hasConceptScore W3083294927C162324750 @default.
- W3083294927 hasConceptScore W3083294927C173201364 @default.
- W3083294927 hasConceptScore W3083294927C2777052490 @default.
- W3083294927 hasConceptScore W3083294927C2777303404 @default.
- W3083294927 hasConceptScore W3083294927C41008148 @default.
- W3083294927 hasConceptScore W3083294927C50522688 @default.
- W3083294927 hasConceptScore W3083294927C522805319 @default.
- W3083294927 hasLocation W30832949271 @default.
- W3083294927 hasOpenAccess W3083294927 @default.
- W3083294927 hasPrimaryLocation W30832949271 @default.
- W3083294927 hasRelatedWork W1606499289 @default.
- W3083294927 hasRelatedWork W1985939653 @default.
- W3083294927 hasRelatedWork W1994410349 @default.
- W3083294927 hasRelatedWork W2347477706 @default.
- W3083294927 hasRelatedWork W2626282817 @default.
- W3083294927 hasRelatedWork W2741252017 @default.
- W3083294927 hasRelatedWork W2911578165 @default.
- W3083294927 hasRelatedWork W3202969339 @default.
- W3083294927 hasRelatedWork W4237513258 @default.
- W3083294927 hasRelatedWork W4299389082 @default.
- W3083294927 isParatext "false" @default.
- W3083294927 isRetracted "false" @default.
- W3083294927 magId "3083294927" @default.
- W3083294927 workType "article" @default.