Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083376705> ?p ?o ?g. }
- W3083376705 endingPage "6908" @default.
- W3083376705 startingPage "6891" @default.
- W3083376705 abstract "Summary This work examines the H ∞ filtering issue for Markov jump systems in the circumstances of partial information on Markov chain and randomly occurring sensor nonlinearities. The partial information considered in this work includes partial information on the Markov state, on transition probabilities and on detection probabilities. A hidden Markov model with partially known transition probabilities and detection probabilities is introduced to describe the above partial information phenomenon. The randomly occurring sensor nonlinearities considered in this work depend on the system operating mode. Based on the Lyapunov methodology and the introduced hidden Markov model, some effective H ∞ performance analysis criteria are derived for the filtering error system under the circumstances of partial information and sensor nonlinearities. In addition, the design procedure of the desired hidden Markov model‐based filter is established, and finally two examples are used to verify the theoretical results." @default.
- W3083376705 created "2020-09-11" @default.
- W3083376705 creator A5006014871 @default.
- W3083376705 creator A5028870837 @default.
- W3083376705 creator A5090022814 @default.
- W3083376705 date "2020-09-04" @default.
- W3083376705 modified "2023-10-17" @default.
- W3083376705 title "HMM‐based <i>H</i> <sub> <i>∞</i> </sub> filtering for Markov jump systems with partial information and sensor nonlinearities" @default.
- W3083376705 cites W1490978409 @default.
- W3083376705 cites W1531616435 @default.
- W3083376705 cites W1966472619 @default.
- W3083376705 cites W2001826782 @default.
- W3083376705 cites W2011164085 @default.
- W3083376705 cites W2032192325 @default.
- W3083376705 cites W2041626688 @default.
- W3083376705 cites W2055213544 @default.
- W3083376705 cites W2093837911 @default.
- W3083376705 cites W2096266510 @default.
- W3083376705 cites W2125838338 @default.
- W3083376705 cites W2140902856 @default.
- W3083376705 cites W2146864279 @default.
- W3083376705 cites W2201712813 @default.
- W3083376705 cites W2275124926 @default.
- W3083376705 cites W2296601549 @default.
- W3083376705 cites W2387463188 @default.
- W3083376705 cites W2417303548 @default.
- W3083376705 cites W2421349026 @default.
- W3083376705 cites W2492063646 @default.
- W3083376705 cites W2530196110 @default.
- W3083376705 cites W2750375548 @default.
- W3083376705 cites W2769090091 @default.
- W3083376705 cites W2789687140 @default.
- W3083376705 cites W2794388780 @default.
- W3083376705 cites W2794598183 @default.
- W3083376705 cites W2801173876 @default.
- W3083376705 cites W2802252324 @default.
- W3083376705 cites W2900585427 @default.
- W3083376705 cites W2900873437 @default.
- W3083376705 cites W2903998267 @default.
- W3083376705 cites W2907086381 @default.
- W3083376705 cites W2907512091 @default.
- W3083376705 cites W2909155607 @default.
- W3083376705 cites W2912076425 @default.
- W3083376705 cites W2936841212 @default.
- W3083376705 cites W2943545650 @default.
- W3083376705 cites W2945192441 @default.
- W3083376705 cites W2946658823 @default.
- W3083376705 cites W2983985835 @default.
- W3083376705 cites W2987250757 @default.
- W3083376705 cites W3138191203 @default.
- W3083376705 doi "https://doi.org/10.1002/rnc.5146" @default.
- W3083376705 hasPublicationYear "2020" @default.
- W3083376705 type Work @default.
- W3083376705 sameAs 3083376705 @default.
- W3083376705 citedByCount "9" @default.
- W3083376705 countsByYear W30833767052020 @default.
- W3083376705 countsByYear W30833767052021 @default.
- W3083376705 countsByYear W30833767052023 @default.
- W3083376705 crossrefType "journal-article" @default.
- W3083376705 hasAuthorship W3083376705A5006014871 @default.
- W3083376705 hasAuthorship W3083376705A5028870837 @default.
- W3083376705 hasAuthorship W3083376705A5090022814 @default.
- W3083376705 hasBestOaLocation W30833767051 @default.
- W3083376705 hasConcept C105795698 @default.
- W3083376705 hasConcept C106131492 @default.
- W3083376705 hasConcept C11413529 @default.
- W3083376705 hasConcept C119857082 @default.
- W3083376705 hasConcept C121332964 @default.
- W3083376705 hasConcept C154945302 @default.
- W3083376705 hasConcept C158622935 @default.
- W3083376705 hasConcept C159886148 @default.
- W3083376705 hasConcept C163836022 @default.
- W3083376705 hasConcept C23224414 @default.
- W3083376705 hasConcept C2775924081 @default.
- W3083376705 hasConcept C31972630 @default.
- W3083376705 hasConcept C33923547 @default.
- W3083376705 hasConcept C41008148 @default.
- W3083376705 hasConcept C47446073 @default.
- W3083376705 hasConcept C54907487 @default.
- W3083376705 hasConcept C60640748 @default.
- W3083376705 hasConcept C62520636 @default.
- W3083376705 hasConcept C98763669 @default.
- W3083376705 hasConceptScore W3083376705C105795698 @default.
- W3083376705 hasConceptScore W3083376705C106131492 @default.
- W3083376705 hasConceptScore W3083376705C11413529 @default.
- W3083376705 hasConceptScore W3083376705C119857082 @default.
- W3083376705 hasConceptScore W3083376705C121332964 @default.
- W3083376705 hasConceptScore W3083376705C154945302 @default.
- W3083376705 hasConceptScore W3083376705C158622935 @default.
- W3083376705 hasConceptScore W3083376705C159886148 @default.
- W3083376705 hasConceptScore W3083376705C163836022 @default.
- W3083376705 hasConceptScore W3083376705C23224414 @default.
- W3083376705 hasConceptScore W3083376705C2775924081 @default.
- W3083376705 hasConceptScore W3083376705C31972630 @default.
- W3083376705 hasConceptScore W3083376705C33923547 @default.
- W3083376705 hasConceptScore W3083376705C41008148 @default.
- W3083376705 hasConceptScore W3083376705C47446073 @default.
- W3083376705 hasConceptScore W3083376705C54907487 @default.